Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(14): 148401, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084449

RESUMEN

We study the energetics and stability of branched tubular membrane structures by computer simulations of a triangulated network model. We find that triple (Y) junctions can be created and stabilized by applying mechanical forces, if the angle between branches is 120°. The same holds for tetrahedral junctions with tetraeder angles. If the wrong angles are enforced, the branches coalesce to a linear structure, a pure tube. After releasing the mechanical force, Y-branched structures remain metastable if one constrains the enclosed volume and the average curvature (the area difference) to a fixed value; tetrahedral junctions however split up into two Y junctions. Somewhat counterintuitively, the energy cost of adding a Y branch is negative in structures with fixed surface area and tube diameter, even if one accounts for the positive contribution of the additional branch end. For fixed average curvature, however, adding a branch also enforces a thinning of tubes, therefore the overall curvature energy cost is positive. Possible implications for the stability of branched networks structures in cells are discussed.

2.
Soft Matter ; 12(40): 8417-8424, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27714368

RESUMEN

Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order-disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electric-field-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...