Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(4): 5125-5132, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33478215

RESUMEN

Power generation through the thermoelectric (TE) effect in small-sized devices requires a submillimeter-thick film that is beneficial to effectively maintain ΔT compared with a micron-scale thin film. However, most TE thick films, which are fabricated using printing technologies, suffer from low electrical conductivity due to the porous structures formed after sintering of the organic binder-mixed TE ink. In this study, we report an n-type TE thick film fabricated through bar-coating of the edge-oxidized-graphene (EOG)-dispersed Bi2.0Te2.7Se0.3 (BTS) paste with copper dopants. We have found that EOG provides the conducting pathway for carriers through electrical bridging between the separated BTS grains in porous TE thick films. The simultaneous enhancement in electrical conductivity and the Seebeck coefficient of the EOG-bridged TE film result in a maximum power factor of 1.54 mW·m-1·K-2 with the addition of 0.01 wt % EOG. Furthermore, the single element made of an n-type EOG-bridged BTS exhibits a superior output power of 1.65 µW at ΔT = 80 K. These values are 5 times higher than those of bare BTS films. Our results clearly indicate that the utilization of EOG with a metal dopant exerts a synergistic effect for enhancing the electrical output performance of n-type TE thick films for thermal energy harvesters.

2.
Sci Rep ; 10(1): 14560, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883998

RESUMEN

Surface oxide (Al2O3) of reactive fine aluminum (Al) particles for solid fuels, propellants, and brazing materials often restricted oxidative performance, though the passivation film acts to protect Al particles from exploding. Here, we report fine Al particles fully covered with a polytetrafluoroethylene (PTFE) layer instead of an Al2O3 film on the surface. This advance is based on the introduction of strong Al-F bonds, known to be an alternative to the Al-O bonds of surface oxides. The DSC results on the PTFE-coated Al particles exhibit higher reactive-exothermic enthalpy energy (12.26 kJ g-1) than 4.85 kJ g-1 by uncoated Al particles. The artificial aging test of the PTFE layer on the Al particles show long-time stability to the external circumstance compared to those by Al2O3. The activation energy for oxidation was investigated from cyclic voltammetry assessment and the measured peak potentials of the anode curve for PTFE/Al (- 0.45 V) and uncoated Al (- 0.39 V) are achieved, respectively. This means that the PTFE layer is more stable against a sudden explosion of Al particles compared to Al2O3. These results are very useful given its capability to control both the reactivity and stability levels during the oxidation of Al particles for practical applications.

3.
Sci Rep ; 8(1): 5747, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636488

RESUMEN

Through the direct decomposition of an Al precursor ink AlH3{O(C4H9)2}, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

4.
J Hazard Mater ; 351: 29-37, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506003

RESUMEN

Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments.


Asunto(s)
Filtros de Aire , Aluminio , Antibacterianos , Poliésteres , Microbiología del Aire , Escherichia coli/crecimiento & desarrollo , Presión , Staphylococcus epidermidis/crecimiento & desarrollo , Electricidad Estática
5.
RSC Adv ; 8(36): 19950-19957, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35541636

RESUMEN

In this study, a roll-to-roll (R2R) process for the large-scale fabrication of aluminum thin films on flexible polyimide (PI) films is proposed. The R2R machine for Al-film coating assembled in the current work uses a previously reported Al etherate-based precursor ink as the source. After the PI substrate is exposed to a diluted catalyst, the Al precursor ink is coated directly on to the substrate by a slit-die coating method. To optimize the injection of the Al precursor ink, a low-flow limit was established. At a film speed of 5 cm s-1, the width of the fabricated Al film was 130 mm. Such Al-coated films exhibit many advantageous features, including 5.87 × 106 S m-1 of high electrical conductivity at 60.9 nm film thickness and high durability with good adhesion. There was only a minor change in the resistance of the film when it was heated at 100 °C in an oven for 10 days or when it was exposed to H2O or ethyl alcohol. Flexibility and tape testing was also conducted and the film showed robustness in both cases. Touch panels (7 cm × 9 cm) were fabricated using the fabricated Al-coated film as one side of the panel; the panel showed enough sensitivity to write recognizable letters on the computer. This indicates that the fabricated Al films can be applied in actual electronic devices without further complicated processing.

6.
Nano Lett ; 17(10): 6443-6452, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892637

RESUMEN

Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

7.
ACS Appl Mater Interfaces ; 9(23): 19612-19621, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28534393

RESUMEN

Recent efforts to develop stretchable resistive heaters open up the possibility for their use in wearable thermotherapy applications. Such heaters should have high electrothermal performance and stability to be used practically, and the fabrication must be simple, economic, reproducible, and scalable. Here we present a simple yet highly efficient way of producing high-performance stretchable heaters, which is based on a facile kirigami pattering (the art of cutting and folding paper) of a highly conductive paper for practical wearable thermotherapy. The resulting kirigami heater exhibits high heating performance at low voltage (>40 °C at 1.2 V) and fast thermal response (<60 s). The simple kirigami patterning approach enables the heater to be extremely stretchable (>400%) while stably retaining its excellent performance. Furthermore, the heater shows the uniform spatial distribution of heat over the whole heating area and is highly durable (1000 cycles at 300% strain). The heater attached to curvilinear body parts shows stable heating performance even under large motions while maintaining intimate conformal contact with the skin thanks to the high stretchability and sufficient restoring force. The usability of the heater as a wearable thermotherapy device is demonstrated by increased blood flow at the wrist during operation.


Asunto(s)
Dispositivos Electrónicos Vestibles , Calefacción , Calor , Hipertermia Inducida
8.
ACS Appl Mater Interfaces ; 9(19): 16495-16504, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437087

RESUMEN

Here, we demonstrate a new strategy of air filtration based on an Al-coated conductive fibrous filter for high efficient nanoparticulate removals. The conductive fibrous filter was fabricated by a direct decomposition of Al precursor ink, AlH3{O(C4H9)2}, onto surfaces of a polyester air filter via a cost-effective and scalable solution-dipping process. The prepared conductive filters showed a low sheet resistance (<1.0 Ω sq-1), robust mechanical durability and high oxidative stability. By electrostatic force between the charged fibers and particles, the ultrafine particles of 30-400 nm in size were captured with a removal efficiency of ∼99.99%. Moreover, the conductive filters exhibited excellent performances in terms of the pressure drop (∼4.9 Pa at 10 cm s-1), quality factor (∼2.2 Pa-1 at 10 cm s-1), and dust holding capacity (12.5 µg mm-2). After being cleaned by water, the filtration efficiency and pressure drop of the conductive filter was perfectly recovered, which indicates its good recyclability. It is expected that these promising features make the conductive fibrous filter have a great potential for use in low-cost and energy-efficient air cleaning devices as well as other relevant research areas.

9.
ACS Appl Mater Interfaces ; 9(2): 1770-1780, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27996234

RESUMEN

A highly stretchable, low-cost strain sensor was successfully prepared using an extremely cost-effective ionic liquid of ethylene glycol/sodium chloride. The hysteresis performance of the ionic-liquid-based sensor was able to be improved by introducing a wavy-shaped fluidic channel diminishing the hysteresis by the viscoelastic relaxation of elastomers. From the simulations on visco-hyperelastic behavior of the elastomeric channel, we demonstrated that the wavy structure can offer lower energy dissipation compared to a flat structure under a given deformation. The resistance response of the ionic-liquid-based wavy (ILBW) sensor was fairly deterministic with no hysteresis, and it was well-matched to the theoretically estimated curves. The ILBW sensors exhibited a low degree of hysteresis (0.15% at 250%), low overshoot (1.7% at 150% strain), and outstanding durability (3000 cycles at 300% strain). The ILBW sensor has excellent potential for use in precise and quantitative strain detections in various areas, such as human motion monitoring, healthcare, virtual reality, and smart clothes.


Asunto(s)
Líquidos Iónicos/química , Elasticidad , Elastómeros , Humanos , Iones , Movimiento (Física)
10.
ACS Nano ; 8(10): 10973-9, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25211125

RESUMEN

We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...