Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadk1874, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536909

RESUMEN

Understanding the atomic-scale mechanisms that govern the structure of interfaces is critical across materials systems but particularly so for two-dimensional (2D) moiré materials. Here, we image, atom-by-atom, the thermally induced structural evolution of twisted bilayer transition metal dichalcogenides using in situ transmission electron microscopy. We observe low-temperature, local conversion of moiré superlattice into nanoscale aligned domains. Unexpectedly, this process occurs by nucleating a new grain within one monolayer, whose crystal orientation is templated by the other. The aligned domains grow through collective rotation of moiré supercells and hopping of 5|7 defect pairs at moiré boundaries. This provides mechanistic insight into the atomic-scale interactions controlling moiré structures and illustrates the potential to pattern interfacial structure and properties of 2D materials at the nanoscale.

2.
Nanoscale ; 16(11): 5836-5844, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38439548

RESUMEN

Monolayer transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for optoelectronic applications due to their direct band gap and strong light-matter interactions. However, exfoliated TMDs have demonstrated optical characteristics that fall short of expectations, primarily because of significant defects and associated doping in the synthesized TMD crystals. Here, we report the improvement of optical properties in monolayer TMDs of MoS2, MoSe2, WS2, and WSe2, by hBN-encapsulation annealing. Monolayer WSe2 showed 2000% enhanced photoluminescence quantum yield (PLQY) and 1000% increased lifetime after encapsulation annealing at 1000 °C, which are attributed to dominant radiative recombination of excitons through dedoping of monolayer TMDs. Furthermore, after encapsulation annealing, the transport characteristics of monolayer WS2 changed from n-type to ambipolar, along with an enhanced hole transport, which also support dedoping of annealed TMDs. This work provides an innovative approach to elevate the optical grade of monolayer TMDs, enabling the fabrication of high-performance optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA