Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400460, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654622

RESUMEN

Lightweight structural materials are commonly used as effective fillers for advanced composites with high toughness. This study focused on enhancing the toughness of direct-spun carbon nanotube yarns (CNTYs) by controlling the micro-textural structure using a water-gap-based direct spinning. Drawing inspiration from the structural features of natural spider silk fibroin, characterized by an α-helix in the amorphous region and ß-sheet in the crystalline region, multiscale bundles within CNTYs are reorganized into a unique nano-coil-like structure. This nano-coiled structure facilitated the efficient dissipation of external mechanical loads through densification with the rearrangement of multiscale bundles, improving specific strength and strain. The resulting CNTYs exhibited exceptional mechanical properties with toughness reaching 250 J g-1, making them promising alternatives to commercially available fibers in lightweight, high-toughness applications. These findings highlight the significance of nano-coiling engineering for emulating bio-inspired micro-textural structures, achieving remarkable enhancement in the toughness of CNTYs.

2.
Nano Lett ; 23(8): 3128-3136, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36951295

RESUMEN

In this study, a range of carbon nanotube yarn (CNTY) architectures was examined and controlled by chemical modification to gain a deeper understanding of CNTY load-bearing systems and produce lightweight and superstrong CNTYs. The architecture of CNTY, which has polymer layers surrounding a compact bundle without hampering the original state of the CNTs in the bundle, is a favorable design for further chemical cross-linking and for enhancing the load-transfer efficiency, as confirmed by in situ Raman spectroscopy under a stress load. The resulting CNTY exhibited excellent mechanical performance that exceeded the specific strength of the benchmark, high-performance fibers. This exceptional strength of the CNTY makes it a promising candidate for the cable of a space elevator traveling from the Earth to the International Space Station given its strength of 4.35 GPa/(g cm-3), which can withstand the self-weight of a 440 km cable.

3.
Adv Sci (Weinh) ; 10(2): e2204250, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36404109

RESUMEN

Super strong fibers, such as carbon or aramid fibers, have long been used as effective fillers for advanced composites. In this study, the highest tensile strength of 5.5 N tex-1 for carbon nanotube yarns (CNTYs) is achieved by controlling the micro-textural structure through a facile and eco-friendly bundle engineering process in direct spinning without any post-treatment. Inspired by the strengthening mechanism of the hierarchical fibrillary structure of natural cellulose fiber, this study develops multiscale bundle structures in CNTYs whereby secondary bundles, ≈200 nm in thickness, evolve from the assembly of elementary bundles, 30 nm in thickness, without any damage, which is a basic load-bearing element in CNTY. The excellent mechanical performance of these CNTYs makes them promising substitutes for the benchmark, lightweight, and super strong commercial fibers used for energy-saving structural materials. These findings address how the tensile strength of CNTY can be improved without additional post-treatment in the spinning process if the development of the aforementioned secondary bundles and the corresponding orientations are properly engineered.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Resistencia a la Tracción , Celulosa
4.
Proc Natl Acad Sci U S A ; 119(42): e2209819119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215466

RESUMEN

Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.


Asunto(s)
Robótica , Fuerza de la Mano , Robótica/métodos
5.
Sci Adv ; 8(1): eabl8631, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985946

RESUMEN

Fiber-type solid-state supercapacitors are being widely investigated as stable power supply for next-generation wearable and flexible electronics. Integrating both high charge storage capability and superior mechanical properties into one fiber is crucial to realize fiber-type solid-state supercapacitors. In this study, we design a "jeweled necklace"­like hybrid composite fiber comprising double-walled carbon nanotube yarn and metal-organic frameworks (MOFs). Subsequent heat treatment transforms MOFs into MOF-derived carbon (MDC), thereby maximizing energy storage capability while retaining the superior mechanical properties. The hybrid fibers with tunable properties, including thickness and MDC loading amount, exhibit a high energy density of 7.54 milliwatt-hour per cubic centimeter at a power density of 190.94 milliwatt per cubic centimeter. The mechanical robustness of the hybrid fibers allows them to operate under various mechanical deformation conditions. Furthermore, it is demonstrated that the resulting superstrong fiber delivers sufficient power to switch on light-emitting diodes by itself while suspending 10-kilogram weight.

6.
Materials (Basel) ; 14(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34947416

RESUMEN

Carbon nanotube fiber (CNTF) is a highly conductive and porous platform to grow active materials of lithium-ion batteries (LIB). Here, we prepared SnO2@CNTF based on sulfonic acid-functionalized CNTF to be used in LIB anodes without binder, conductive agent, and current collector. The SnO2 nanoparticles were grown on the CNTF in an aqueous system without a hydrothermal method. The functionalized CNTF exhibited higher conductivity and effective water infiltration compared to the raw CNTF. Due to the enhanced water infiltration, the functionalized CNTF became SnO2@CNTF with an ideal core-shell structure coated with a thin SnO2 layer. The specific capacity and rate capability of SnO2@-functionalized CNTF were superior to those of SnO2@raw CNTF. Since the SnO2@CNTF-based anode was free of a binder, conductive agent, and current collector, the specific capacity of the anode studied in this work was higher than that of conventional anodes.

7.
Sci Adv ; 7(48): eabg9203, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818043

RESUMEN

Elasmobranch fishes, such as sharks, skates, and rays, use a network of electroreceptors distributed on their skin to locate adjacent prey. The receptors can detect the electric field generated by the biomechanical activity of the prey. By comparing the intensity of the electric fields sensed by each receptor in the network, the animals can perceive the relative positions of the prey without making physical contact. Inspired by this capacity for prey localization, we developed a soft artificial electroreceptor that can detect the relative positions of nearby objects in a noncontact manner by sensing the electric fields that originate from the objects. By wearing the artificial receptor, one can immediately receive spatial information of a nearby object via auditory signals. The soft artificial electroreceptor is expected to expand the ways we can perceive space by providing a sensory modality that did not evolve naturally in human beings.

8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431685

RESUMEN

Mud nests built by swallows (Hirundinidae) and phoebes (Sayornis) are stable granular piles attached to cliffs, walls, or ceilings. Although these birds have been observed to mix saliva with incohesive mud granules, how such biopolymer solutions provide the nest with sufficient strength to support the weight of the residents as well as its own remains elusive. Here, we elucidate the mechanism of strong granular cohesion by the viscoelastic paste of bird saliva through a combination of theoretical analysis and experimental measurements in both natural and artificial nests. Our mathematical model considering the mechanics of mud nest construction allows us to explain the biological observation that all mud-nesting bird species should be lightweight.


Asunto(s)
Comportamiento de Nidificación/fisiología , Passeriformes/fisiología , Saliva/fisiología , Golondrinas/fisiología , Animales , Modelos Teóricos
9.
Sci Robot ; 5(44)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33022609

RESUMEN

Spiders use adhesive, stretchable, and translucent webs to capture their prey. However, sustaining the capturing capability of these webs can be challenging because the webs inevitably invite contamination, thus reducing its adhesion force. To overcome these challenges, spiders have developed strategies of using webs to sense prey and clean contaminants. Here, we emulate the capturing strategies of a spider with a single pair of ionic threads based on electrostatics. Our ionic spiderwebs completed consecutive missions of cleaning contamination on itself, sensing approaching targets, capturing those targets, and releasing them. The ionic spiderwebs demonstrate the importance of learning from nature and push the boundaries of soft robotics in an attempt to combine mutually complementary functions into a single unit with a simple structure.


Asunto(s)
Robótica/instrumentación , Arañas/fisiología , Adhesividad , Animales , Materiales Biomiméticos , Biomimética/instrumentación , Diseño de Equipo , Hidrogeles , Iones , Modelos Biológicos , Conducta Predatoria/fisiología , Seda/química , Electricidad Estática , Vibración
10.
Materials (Basel) ; 14(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383785

RESUMEN

Carbon nanotube fiber (CNTF), prepared by the direct-spinning method, has several nanopores, and the infiltration behavior of resins into these nanopores could influence the mechanical properties of CNTF-based composites. In this work, we investigated the infiltration behavior of resin into the nanopores of the CNTFs and mechanical properties of the CNTF-based single-fiber composites using six epoxy resins with varying viscosities. Epoxy resins can be easily infiltrated into the nanopores of the CNTF; however, pores appear when a resin with significantly high or low viscosity is used in the preparation process of the composites. All the composite fibers exhibit lower load-at-break value compared to as-densified CNTF, which is an unexpected phenomenon. It is speculated that the bundle structure of the CNTF can undergo changes due to the high affinity between the epoxy and CNTF. As composite fibers containing pores exhibit an even lower load-at-break value, the removal of pores by the defoaming process is essential to enhance the mechanical properties of the composite fibers.

11.
J R Soc Interface ; 16(161): 20190556, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31795862

RESUMEN

Shaping a plant root into an ideal structure for water capture is increasingly important for sustainable agriculture in the era of global climate change. Although the current genetic engineering of crops favours deep-reaching roots, here we show that nature has apparently adopted a different strategy of shaping roots. We construct a mathematical model for optimal root length distribution by considering that plants seek maximal water uptake at the metabolic expenses of root growth. Our theory finds a logarithmic decrease of root length density with depth to be most beneficial for efficient water uptake, which is supported by biological data as well as our experiments using root-mimicking network systems. Our study provides a tool to gauge the relative performance of root networks in transgenic plants engineered to endure a water deficit. Moreover, we lay a fundamental framework for mechanical understanding and design of water-absorptive growing networks, such as medical and industrial fluid transport systems and soft robots, which grow in porous media including soils and biotissues.


Asunto(s)
Modelos Biológicos , Raíces de Plantas/crecimiento & desarrollo , Suelo , Agua/metabolismo
12.
Materials (Basel) ; 12(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661788

RESUMEN

Graphene derivatives are effective nanofillers for the enhancement of the matrix mechanical properties; nonetheless, graphene oxide (GO), reduced GO, and exfoliated graphene all present distinct advantages and disadvantages. In this study, polyvinyl alcohol (PVA) composite fibers have been prepared using a recently reported graphene derivative, i.e., edge-selectively oxidized graphene (EOG). The PVA/EOG composite fibers were simply fabricated via conventional wet-spinning methods; thus, they can be produced at the commercial level. X-ray diffractometry, scanning electron microscopy, and two-dimensional wide-angle X-ray scattering analyses were conducted to evaluate the EOG dispersibility and alignment in the PVA matrix. The tensile strength of the PVA/EOG composite fibers was 631.4 MPa at an EOG concentration of 0.3 wt %, which is 31.4% higher compared with PVA-only fibers (480.6 MPa); compared with PVA composite fibers made with GO, which is the most famous water-dispersible graphene derivative, the proposed PVA/EOG ones exhibited about 10% higher tensile strength. Therefore, EOG can be considered an effective nanofiller to enhance the strength of PVA fibers without additional thermal or chemical reduction processes.

13.
Nat Commun ; 10(1): 2962, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273205

RESUMEN

Developing methods to assemble nanomaterials into macroscopic scaffolds is of critical significance at the current stage of nanotechnology. However, the complications of the fabrication methods impede the widespread usages of newly developed materials even with the superior properties in many cases. Here, we demonstrate the feasibility of a highly-efficient and potentially-continuous fiber-spinning method to produce high-performance carbon nanotube (CNT) fiber (CNTF). The processing time is <1 min from synthesis of CNTs to fabrication of highly densified and aligned CNTFs. CNTFs that are fabricated by the developed spinning method are ultra-lightweight, strong (specific tensile strength = 4.08 ± 0.25 Ntex-1), stiff (specific tensile modulus = 187.5 ± 7.4 Ntex-1), electrically conductive (2,270 S m2kg-1), and highly flexible (knot efficiency = 48 ± 15%), so they are suitable for various high-value fabric-based applications.

14.
PLoS One ; 14(1): e0204191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30703086

RESUMEN

In the airway network of a human lung, the airway diameter gradually decreases through multiple branching. The diameter reduction ratio of the conducting airways that transport gases without gas exchange is 0.79, but this reduction ratio changes to 0.94 in acinar airways beyond transitional bronchioles. While the reduction in the conducting airways was previously rationalized on the basis of Murray's law, our understanding of the design principle behind the acinar airways has been far from clear. Here we elucidate that the change in gas transfer mode is responsible for the transition in the diameter reduction ratio. The oxygen transfer rate per unit surface area is maximized at the observed geometry of acinar airways, which suggests the minimum cost for the construction and maintenance of the acinar airways. The results revitalize and extend the framework of Murray's law over an entire human lung.


Asunto(s)
Bronquiolos/anatomía & histología , Modelos Biológicos , Oxígeno/metabolismo , Alveolos Pulmonares/anatomía & histología , Respiración , Células Acinares/fisiología , Bronquiolos/citología , Bronquiolos/fisiología , Humanos , Tamaño de los Órganos/fisiología , Alveolos Pulmonares/fisiología
15.
Sci Adv ; 4(3): eaao7051, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29682606

RESUMEN

We mundanely observe cellulose (kitchen) sponges swell while absorbing water. Fluid flows in deformable porous media, such as soils and hydrogels, are classically described on the basis of the theories of Darcy and poroelasticity, where the expansion of media arises due to increased pore pressure. However, the situation is qualitatively different in cellulosic porous materials like sponges because the pore expansion is driven by wetting of the surrounding cellulose walls rather than by increase of the internal pore pressure. We address a seemingly so simple but hitherto unanswered question of how fast water wicks into the swelling sponge. Our experiments uncover a power law of the wicking height versus time distinct from that for nonswelling materials. The observation using environmental scanning electron microscopy reveals the coalescence of microscale wall pores with wetting, which allows us to build a mathematical model for pore size evolution and the consequent wicking dynamics. Our study sheds light on the physics of water absorption in hygroscopically responsive multiscale porous materials, which have far more implications than everyday activities (for example, cleaning, writing, and painting) carried out with cellulosic materials (paper and sponge), including absorbent hygiene products, biomedical cell cultures, building safety, and cooking.

16.
ACS Nano ; 11(8): 7608-7614, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28700205

RESUMEN

As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl3, respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 µW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.

17.
ChemSusChem ; 10(8): 1675-1682, 2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28058792

RESUMEN

Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance.


Asunto(s)
Carbono/química , Suministros de Energía Eléctrica , Metales/química , Nanocompuestos/química , Fenoles/química , Electroquímica , Microscopía Electrónica de Transmisión
18.
Nanoscale ; 8(45): 18972-18979, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27808334

RESUMEN

In this study, we have developed an efficient and scalable method for improving the mechanical properties of carbon nanotube (CNT) fibers. The mechanical properties of as-synthesized CNT fibers are primarily limited by their porous structures and the weak bonding between adjacent CNTs. These result in inefficient load transfer, leading to low tensile strength and modulus. In order to overcome these limitations, we have adopted chemical vapor infiltration (CVI) to efficiently fill the internal voids of the CNT fibers with carbon species which are thermally decomposed from gas phase hydrocarbon. Through the optimization of the processing time, temperature, and gas flow velocity, we have confirmed that carbon species formed by the thermal decomposition of acetylene (C2H2) gas successfully infiltrated into porous CNT fibers and densified them at relatively low temperatures (650-750 °C). As a result, after CVI processing of the as-synthesized CNT fibers under optimum conditions, the tensile strength and modulus increased from 0.6 GPa to 1.7 GPa and from 25 GPa to 127 GPa, respectively. The CVI technique, combined with the direct spinning of CNT fibers, can open up a route to the fast and scalable fabrication of high performance CNT/C composite fibers. In addition, the CVI technique is a platform technology that can be easily adapted into other nano-carbon based yarn-like fibers such as graphene fibers.

19.
Nat Commun ; 7: 11223, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27032534

RESUMEN

To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.

20.
ACS Nano ; 10(2): 2184-92, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26795353

RESUMEN

The self-assembled nanostructures of carbon nanomaterials possess a damage-tolerable architecture crucial for the inherent mechanical properties at both micro- and macroscopic levels. Bone, or "natural composite," has been known to have superior energy dissipation and fracture resistance abilities due to its unique load-bearing hybrid structure. However, few approaches have emulated the desirable structure using carbon nanomaterials. In this paper, we present an approach in fabricating a hybrid composite paper based on graphene oxide (GO) and carbon nanotube (CNT) that mimicks the natural bone structure. The size-tuning strategy enables smaller GO sheets to have more cross-linking reactions with CNTs and be homogeneously incorporated into CNT-assembled paper, which is advantageous for effective stress transfer. The resultant hybrid composite film has enhanced mechanical strength, modulus, toughness, and even electrical conductivity compared to previously reported CNT-GO based composites. We further demonstrate the usefulness of the size-tuned GOs as the "stress transfer medium" by performing in situ Raman spectroscopy during the tensile test.


Asunto(s)
Sustitutos de Huesos/química , Grafito/química , Nanotubos de Carbono/química , Óxidos/química , Papel , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...