Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(2): 704-719, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389877

RESUMEN

Human rhinoviruses (hRVs) cause upper and lower respiratory tract infections and exacerbate asthma and chronic obstructive pulmonary disease. hRVs comprise more than 160 strains with considerable genetic variation. Their high diversity and strain-specific interactions with antisera hinder the development of anti-hRV therapeutic agents. Phosphatidylinositol-4-kinase IIIß (PI4KIIIß) is a key enzyme in the phosphoinositide signalling pathway that is crucial for the replication and survival of various viruses. We identified novel PI4KIIIß inhibitors, N-(4-methyl-5-arylthiazol)-2-amide derivatives, by generating a hit compound, 1a, from the high-throughput screening of a chemical library, followed by the optimization study of 1a. Inhibitor 7e exhibited the highest activity (EC50 = 0.008, 0.0068, and 0.0076 µM for hRV-B14, hRV-A16, and hRV-A21, respectively) and high toxicity (CC50 = 6.1 µM). Inhibitor 7f showed good activity and low toxicity and provided the highest selectivity index (SI ≥ 4638, >3116, and >2793 for hRV-B14, hRV-A16, and hRV-A21, respectively). Furthermore, 7f showed broad-spectrum activities against various hRVs, coxsackieviruses, and other enteroviruses, such as EV-A71 and EV-D68. The binding mode of the inhibitors was investigated using 7f, and the experimental results of plaque reduction, replicon and cytotoxicity, and time-of-drug-addition assays suggested that 7f acts as a PI4KIIIß inhibitor. The kinase inhibition activity of this series of compounds against PI4KIIIα and PI4KIIIß was assessed, and 7f demonstrated kinase inhibition activity with an IC50 value of 0.016 µM for PI4KIIIß, but not for PI4KIIIα (>10 µM). Therefore, 7f represents a highly potent and selective PI4KIIIß inhibitor for the further development of antiviral therapy against hRVs or other enteroviruses.

2.
Bioorg Med Chem Lett ; 96: 129504, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838342

RESUMEN

This study aimed to explore non-pyridinium oxime acetylcholinesterase (AChE) reactivators that could hold the potential to overcome the limitations of the currently available compounds used in the clinic to treat the neurologic manifestations induced by intoxication with organophosphorus agents. Fifteen compounds with various non-pyridinium oxime moieties were evaluated for AChE activity at different concentrations, including aldoximes, ketoximes, and α-ketoaldoximes. The therapeutic potential of the oxime compounds was evaluated by assessing their ability to reactivate AChE inhibited by paraoxon. Among the tested compounds, α-Ketoaldoxime derivative 13 showed the highest reactivation (%) reaching 67 % and 60 % AChE reactivation when evaluated against OP-inhibited electric eel AChE at concentrations of 1,000 and 100 µM, respectively. Compound 13 showed a comparable reactivation ability of AChE (60 %) compared to that of pralidoxime (56 %) at concentrations of 100 µM. Molecular docking simulation of the most active compounds 12 and 13 was conducted to predict the binding mode of the reactivation of electric eel AChE. As a result, a non-pyridinium oxime moiety 13, is a potential reactivator of OP-inhibited AChE and is taken as a lead compound for the development of novel AChE reactivators with enhanced capacity to freely cross the blood-brain barrier.


Asunto(s)
Reactivadores de la Colinesterasa , Oximas , Oximas/farmacología , Oximas/química , Paraoxon/farmacología , Acetilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Acetamidas , Compuestos Organofosforados/química
3.
Bioorg Med Chem Lett ; 64: 128673, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292344

RESUMEN

Small-molecule inhibitors exhibiting broad-spectrum enteroviral inhibition by targeting viral replication proteins are highly desirable in antiviral drug discovery. We used the previously identified antiviral compound 1 as the starting material to develop a novel compound series with high efficacy against human rhinovirus (hRV). Further optimization of N-substituted triazolopyrimidinone derivatives revealed that the N-alkyl triazolopyrimidinone derivatives (2) had more potent antiviral activity against hRVs than compound 1. The new compounds showed improved selectivity index values, and compound 2c (KR-25210) displayed broad anti-hRV activity, with half-maximal effective concentration values ≤ 2 µM against all tested hRVs. In addition, 2c showed notable activity against other enteroviruses. Drug-likeness elucidation showed that 2c exhibited reasonable human and rat liver microsomal phase-I stability and safe CYP inhibition. Replication studies revealed that 2c is not a capsid inhibitor, and a time-of-addition assay indicated that 2c targets the virus replication stages.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Animales , Antivirales/química , Cápside/metabolismo , Infecciones por Enterovirus/tratamiento farmacológico , Purinas , Ratas , Rhinovirus , Replicación Viral
4.
Bioorg Med Chem Lett ; 42: 128067, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957246

RESUMEN

The outbreak of coronavirus (CoV) disease 2019 (COVID-19) caused by the severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has turned into a pandemic. The enzyme 3C-like protease (3CLpro) is essential for the maturation of viral polyproteins in SARS-CoV-2 and is therefore regarded as a key drug target for treating the disease. To identify 3CLpro inhibitors that can suppress SARS-CoV-2 replication, we performed a virtual screening of 500,282 compounds in a Korean compound bank. We then subjected the top computational hits to inhibitory assays against 3CLpro in vitro, leading to the identification of a class of non-covalent inhibitors. Among these inhibitors, compound 7 showed an EC50 of 39.89 µM against SARS-CoV-2 and CC50 of 453.5 µM. This study provides candidates for the optimization of potent 3CLpro inhibitors showing antiviral effects against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/metabolismo , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/metabolismo , Unión Proteica , República de Corea , Bibliotecas de Moléculas Pequeñas/metabolismo , Células Vero
5.
Biomolecules ; 11(2)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513955

RESUMEN

Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Animales , Dominio Catalítico , Análisis por Conglomerados , Activación Enzimática , Humanos , Ligandos , Ratones , Modelos Moleculares , Organofosfatos/química , Oximas/química , Fósforo/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Teoría Cuántica , Sarín/química
6.
J Enzyme Inhib Med Chem ; 36(1): 437-449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33467931

RESUMEN

The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Compuestos de Piridinio/farmacología , Compuestos de Quinolinio/farmacología , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/química , Compuestos de Quinolinio/síntesis química , Compuestos de Quinolinio/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
7.
ACS Med Chem Lett ; 11(2): 166-171, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32071684

RESUMEN

Hepatitis B virus (HBV) remains a major health concern with 260 million people having been infected globally, and approximately 680,000 deaths have occurred annually from cirrhosis and liver cancer. The modulation of HBV capsid assembly has emerged as a promising therapeutic approach for curing chronic HBV infection. Small-molecule capsid assembly modulators (CAMs) can broadly be classified as heteroaryldihydropyrimidines and sulfamoylbenzamides (SBAs). SBAs are capsid activators that inhibit viral replication by achieving capsid assembly before polymerase encapsulation. Herein, we report a novel series of HBV CAMs based on NVR 3-778, a potent CAM belonging to the SBA class. The lead compound (KR-26556) exhibited improved pharmacological activity and was examined through molecular docking studies.

8.
Org Lett ; 20(23): 7509-7513, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30489090

RESUMEN

Herein, a one-step chlorosulfonylation of alkynes via a photocatalytic redox process is described. A variety of commercially available sulfonyl chlorides can be applied for the generation of sulfonyl radical species under visible-light irradiation. Regio- and stereoselective addition of the sulfonyl radical and chloride leads to the efficient formation of ( E)-selective ß-chlorovinyl sulfones from a broad range of terminal and internal alkynes. The reported method represents an operationally simple and mild way to furnish vinyl sulfones.

9.
Bioorg Med Chem Lett ; 28(23-24): 3784-3786, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30301674

RESUMEN

First-line medical treatment against nerve agents consists of co-administration of anticholinergic agents and oxime reactivators, which reactivate inhibited AChE. Pralidoxime, a commonly used oxime reactivator, is effective against some nerve agents but not against others; thus, new oxime reactivators are needed. Novel tacrine-pyridinium hybrid reactivators in which 4-pyridinealdoxime derivatives are connected to tacrine moieties by linear carbon chains of different lengths (C2-C7) were prepared (Scheme 1, 5a-f). Their binding affinities to electric eel AChE were tested because oximes can inhibit free AChE, and the highest AChE activity (95%, 92%, and 90%) was observed at 1 µM concentrations of the oximes (5a, 5b, and 5c, respectively). Based on their inhibitory affinities towards free AChE, 1 µM concentrations of the oxime derivatives (5) were used to examine reactivation of paraoxon-inhibited AChE. Reactivation ability increased as the carbon linker chains lengthened (n = 2-5), and 5c and 5d showed remarkable reactivation ability (41%) compared to that of 2-PAM (16%) and HI-6 (4%) against paraoxon-inhibited electric eel AChE at 1 µM concentrations. Molecular docking simulation showed that the most stable binding free energy was observed in 5c at 73.79 kcal⋅mol-1, and the binding mode of 5c is acceptable for the oxygen atom of oximate to attack the phosphorus atom of paraoxon and reactivate paraoxon-inhibited eel AChE model structure.


Asunto(s)
Acetilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacología , Tacrina/química , Tacrina/farmacología , Animales , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/síntesis química , Electrophorus , Simulación del Acoplamiento Molecular , Paraoxon/farmacología , Compuestos de Piridinio/síntesis química , Tacrina/síntesis química
10.
ACS Med Chem Lett ; 9(7): 667-672, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30034598

RESUMEN

The human rhinovirus (hRV) is the causative agent of the common cold that often aggravates respiratory complications in patients with asthma or chronic obstructive pulmonary disease. The high rate of mutations and variety of serotypes are limiting the development of anti-hRV drugs, which emphasizes the need for the discovery of novel lead compounds. Previously, we identified antiviral compound 1 that we used here as the starting material for developing a novel compound series with high efficacy against hRV-A and -B. Improved metabolic stability was achieved by substituting an ester moiety with a 1,2,4-oxadiazole group. Specifically, compound 3k exhibited a high efficacy against hRV-B14, hRV-A21, and hRV-A71, with EC50 values of 66.0, 22.0, and 3.7 nM, respectively, and a relevant hepatic stability (59.6 and 40.7% compound remaining after 30 min in rat and human liver microsomes, respectively). An in vivo study demonstrated that 3k possessed a desirable pharmacokinetic profile with low systemic clearance (0.158 L·h-1·kg-1) and modest oral bioavailability (27.8%). Hence, 3k appears to be an interesting candidate for the development of antiviral lead compounds.

11.
Org Lett ; 20(7): 1693-1697, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29561157

RESUMEN

The direct oxidative addition of CF3 and H2O to alkynes was achieved with photoredox catalysis to obtain α-trifluoromethyl ketones via rapid enol-keto tautomerization. The reaction exhibits high functional group tolerance and regioselectivity. Heterocycles of various sizes containing CF3 were synthesized from the α-CF3-substituted diketones obtained through the protocol, thereby demonstrating the versatile applicability of the method. Mechanistic studies of the reaction with isotopes provided insight into the reaction pathway.

12.
Org Lett ; 20(7): 1698-1702, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29569444

RESUMEN

A general photoredox-catalyzed intramolecular cyclization was developed for the synthesis of trifluoromethylated heterocyclic compounds. The reaction proceeded smoothly under mild photocatalytic conditions with high functional group tolerance, allowing the preparation of oxygen-, sulfur-, or nitrogen-containing heterocycles of different sizes. The broad substrate scope demonstrated the complexity-building potential of the strategy.

13.
Bioorg Med Chem Lett ; 27(15): 3582-3585, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587824

RESUMEN

Members of a series of 4-aryl-6,7,8,9-tetrahydrobenzo[4,5]thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-ones (1, Fig. 2) were prepared and tested against representative enteroviruses including Human Coxsackievirus B1 (Cox B1), Human Coxsackievirus B3 (Cox B3), human Poliovirus 3 (PV3), human Rhinovirus 14 (HRV14), human Rhinovirus 21 (HRV 21) and human Rhinovirus 71 (HRV 71). The C-8-tert-butyl group on the tetrahydrobenzene ring in these substances was found to be crucial for their enterovirus activity. One member of this group, 1e, showed single digit micromolar activities (1.6-8.85µM) against a spectrum of viruses screened, and the highest selectivity index (SI) values for Cox B1 (>11.2), for Cox B3 (>11.5), and for PV3 (>51.2), respectively. In contrast, 1p, was the most active analog against the selected HRVs (1.8-2.6µM), and showed the highest selectivity indices among the group of compounds tested. The SI values for 1p were 11.5 for HRV14, 8.4 for HRV21, and 12.1 for HRV71, respectively.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Enterovirus/efectos de los fármacos , Pirimidinonas/química , Pirimidinonas/farmacología , Triazoles/química , Triazoles/farmacología , Animales , Antivirales/metabolismo , Enterovirus/fisiología , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/virología , Células HeLa , Humanos , Microsomas/metabolismo , Pirimidinonas/metabolismo , Ratas , Triazoles/metabolismo , Replicación Viral/efectos de los fármacos
14.
J Med Chem ; 60(13): 5472-5492, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28581749

RESUMEN

Human rhinoviruses (hRVs) are the main causative pathogen for common colds and are associated with the exacerbation of asthma. The wide variety in hRV serotypes has complicated the development of rhinovirus replication inhibitors. In the current investigation, we developed a novel series of benzothiophene derivatives and their analogues (6-8) that potently inhibit the replication of both hRV-A and hRV-B strains. Compound 6g inhibited the replication of hRV-B14, A21, and A71, with respective EC50 values of 0.083, 0.078, and 0.015 µM. The results of a time-of-addition study against hRV-B14 and hRV-A16 and resistant mutation analysis on hRV-B14 implied that 6g acts at the early stage of the viral replication process, interacting with viral capsid protein. A molecular docking study suggested that 6g has a capsid-binding mode similar to that of pleconaril. Finally, derivatives of 6 also displayed significant inhibition against poliovirus 3 (PV3) replication, implying their potential inhibitory activities against other enterovirus species.


Asunto(s)
Antivirales/farmacología , Rhinovirus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Tiofenos/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Replicación Viral/efectos de los fármacos
15.
Org Lett ; 19(8): 1962-1965, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28394131

RESUMEN

A new photoredox-catalyzed chlorotrifluoromethylation reaction of internal arylalkynes under mild conditions using visible light has been developed. The reactions proceed with high levels of regio- and stereoselectivity and utilize commercially available CF3SO2Cl as both the CF3 and Cl source. In the mechanistic pathway for this process, generation of the CF3 radical and chloride ion occurs by Ir(ppy)3-photocatalyzed reductive decomposition of CF3SO2Cl. The synthetically important trifluoromethyl-substituted vinyl chlorides produced in this process can be readily transformed to 1,1-bis-arylalkenes by using Suzuki coupling.

16.
Antiviral Res ; 140: 37-44, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28088354

RESUMEN

The genus Enterovirus (e.g. poliovirus, coxsackievirus, rhinovirus) of the Picornaviridae family of positive-strand RNA viruses includes many important pathogens linked to a range of acute and chronic diseases for which no approved antiviral therapy is available. Targeting a step in the life cycle that is highly conserved provides an attractive strategy for developing broad-range inhibitors of enterovirus infection. A step that is currently explored as a target for the development of antivirals is the formation of replication organelles, which support replication of the viral genome. To build replication organelles, enteroviruses rewire cellular machinery and hijack lipid homeostasis pathways. For example, enteroviruses exploit the PI4KIIIß-PI4P-OSBP pathway to direct cholesterol to replication organelles. Here, we uncover that TTP-8307, a known enterovirus replication inhibitor, acts through the PI4KIIIß-PI4P-OSBP pathway by directly inhibiting OSBP activity. However, despite a shared mechanism of TTP-8307 with established OSBP inhibitors (itraconazole and OSW-1), we identify a number of notable differences between these compounds. The antiviral activity of TTP-8307 extends to other viruses that require OSBP, namely the picornavirus encephalomyocarditis virus and the flavivirus hepatitis C virus.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Enterovirus/efectos de los fármacos , Imidazoles/farmacología , Receptores de Esteroides/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Colestenonas/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Genoma Viral/efectos de los fármacos , Células HeLa , Humanos , Itraconazol/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos de los fármacos , Poliovirus/efectos de los fármacos , Receptores de Esteroides/metabolismo , Rhinovirus/efectos de los fármacos , Saponinas/farmacología
17.
Antiviral Res ; 134: 77-88, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27565992

RESUMEN

The spiro compound 5,6-dimethyl-3H,3'H-spiro(benzofuran-2,1'-isobenzofuran)-3,3'-dione (KR-23502) has antiviral activity against influenza A and more potently B viruses. The aim of this study is to elucidate its mechanism of action. Subcellular localization and time-course expression of influenza B viral proteins, nucleoprotein (NP) and matrix protein 1 (M1), showed that KR-23502 reduced their amounts within 5 h post-infection. Early steps of virus life cycle, including virus entry, nuclear localization of NP and viral RNA-dependent RNA replication, were not affected by KR-23502. Instead it interrupted a later event corresponding to nuclear export of NP and M1 proteins. Delivery of viral ribonucleoprotein (vRNP)-M1 complex has been known to be mediated by the viral nuclear export protein (NEP) through interaction with cellular chromosomal maintenance 1 (CRM1) protein. In this study, we experimentally demonstrated that the compound targets the nuclear export of vRNP. Moreover, a single mutation (aspartate to glycine) at amino acid position 54 in M1 [M1(D54G)] was detected after 18 passages in the presence of KR-23502 with a 2-fold increase in 50% effective concentration indicating that this compound has a relatively high genetic barrier to resistance. Interestingly, it was observed that proteasome-mediated degradation of M1(D54G) was attenuated by KR-23502. In conclusion, we suggest that KR-23502 shows its anti-influenza activity by downregulating NEP/CRM1-mediated nuclear export of influenza vRNP and M1. KR-23502 provides a core chemical skeleton for further structure-based design of novel antivirals against influenza viruses.


Asunto(s)
Transporte Activo de Núcleo Celular/efectos de los fármacos , Antivirales/farmacología , Benzofuranos/farmacología , Virus de la Influenza B/efectos de los fármacos , Ribonucleoproteínas/efectos de los fármacos , Proteínas de la Matriz Viral , Núcleo Celular/metabolismo , Humanos , Virus de la Influenza B/química , Virus de la Influenza B/genética , Gripe Humana/tratamiento farmacológico , Mutación , ARN Viral , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de la Matriz Viral/efectos de los fármacos , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
18.
Org Lett ; 16(19): 5060-3, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25229881

RESUMEN

High-throughput screening was performed on ∼6800 compounds to identify KR-72039 as an inhibitor of H1N1 and H5N1 neuraminidases (NAs). Structure-activity relationship studies led to 3e, which inhibited H5N1 NA with an IC50 of 2.8 µM and blocked viral replication. Docking analysis shows that compounds bind to loop-430 around the NA active site. Compound 3l additionally inhibited H7N9 NA, making it a dual inhibitor of N1- and N2-type NAs.


Asunto(s)
Neuraminidasa/antagonistas & inhibidores , Pirazoles/síntesis química , Pirazoles/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Estructura Molecular , Pirazoles/química , Relación Estructura-Actividad
19.
Yonsei Med J ; 55(4): 886-94, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24954315

RESUMEN

PURPOSE: Acute side effects of radiation such as oral mucositis are observed in most patients. Although several potential radioprotective agents have been proposed, no effective agent has yet been identified. In this study, we investigated the effectiveness of synthetic compound 3-amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR22332) as a radioprotective agent. MATERIALS AND METHODS: Cell viability, apoptosis, the generation of reactive oxygen species (ROS), mitochondrial membrane potential changes, and changes in apoptosis-related signaling were examined in human keratinocyte (HaCaT). RESULTS: KR22332 inhibited irradiation-induced apoptosis and intracellular ROS generation, and it markedly attenuated the changes in mitochondrial membrane potential in primary human keratinocytes. Moreover, KR22332 significantly reduced the protein expression levels of ataxia telangiectasia mutated protein, p53, and tumor necrosis factor (TNF)-α compared to significant increases observed after radiation treatment. CONCLUSION: KR22332 significantly inhibited radiation-induced apoptosis in human keratinocytes in vitro, indicating that it might be a safe and effective treatment for the prevention of radiation-induced mucositis.


Asunto(s)
Protectores contra Radiación/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Queratinocitos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Protectores contra Radiación/química , Especies Reactivas de Oxígeno/metabolismo
20.
Antiviral Res ; 107: 66-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24794525

RESUMEN

A target-free approach was applied to discover anti-influenza viral compounds, where influenza infected Madin-Darby canine kidney cells were treated 7500 different small organic chemicals individually and reduction of virus-induced cytopathic effect was measured. One of the hit compounds was (Z)-1-((5-fluoro-1H-indol-3-yl)methylene)-6-methyl-4-thioxo-4,5-dihydrofuro[3,4-c]pyridin-3(1H)-one (15a) with half-maximal effective concentrations of 17.4-21.1µM against influenza A/H1N1, A/H3N2 and B viruses without any cellular toxicity at 900µM. To investigate the structure-activity relationships, two dozens of the hit analogs were synthesized. Among them, 15g, 15j, 15q, 15s, 15t and 15x had anti-influenza viral activity comparable or superior to that of the initial hit. The anti-influenza viral compounds efficiently suppressed not only viral protein level of the infected cells but also production of viral progeny in the culture supernatants in a dose-dependent manner. Based on a mode-of-action study, they did not affect virus entry or RNA replication. Instead, they suppressed viral neuraminidase activity. This study is the first to demonstrate that dihydrofuropyridinones could serve as lead compounds for the discovery of alternative influenza virus inhibitors.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Orthomyxoviridae/efectos de los fármacos , Piridonas/síntesis química , Piridonas/farmacología , Animales , Efecto Citopatogénico Viral , Perros , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Células de Riñón Canino Madin Darby , Pruebas de Sensibilidad Microbiana , Neuraminidasa/antagonistas & inhibidores , Orthomyxoviridae/enzimología , Orthomyxoviridae/fisiología , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...