Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 344: 140314, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769914

RESUMEN

This work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER). The prepared electrocatalyst exhibited low overpotential (i.e., 230 mV) at 30 mA cm-2 for OER in an alkaline electrolyte (i.e., 1 M KOH). Furthermore, the optimized Mo-doped NiFe-LDH electrode was used as an anode in a laboratory-scale in situ single cell test system for alkaline water electrolysis at 80 °C with a continuous flow of 30 wt% KOH, and it shows the efficient electrochemical performance with a lower cell voltage of 1.80 V at a current density of 400 mA cm-2. In addition, an admirable long-term cell durability is also demonstrated by the cell for 24 h. This work encourages new designs and further development of electrode material for alkaline water electrolysis on a commercial scale.


Asunto(s)
Electrólisis , Agua , Galvanoplastia , Electrodos , Oxígeno
2.
Sci Rep ; 6: 39587, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004799

RESUMEN

Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.


Asunto(s)
Complejos Multienzimáticos/química , Nanoestructuras/química , Sitios de Unión , Dominio Catalítico , ADN/química , Formiato Deshidrogenasas/química , Cinética , Manitol/química , Manitol Deshidrogenasas/química , Methanocaldococcus/enzimología , Oxígeno/química , Probabilidad , Pseudomonas fluorescens/enzimología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Thiobacillus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...