Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 31: 16-27, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36589710

RESUMEN

Leber congenital amaurosis (LCA), an inherited retinal degeneration, causes severe visual dysfunction in children and adolescents. In patients with LCA, pathogenic variants, such as RPE65, are evident in specific genes, related to the functions of retinal pigment epithelium and photoreceptors. In contrast to the original Cas9, base editing tools can correct pathogenic substitutions without generation of DNA double-stranded breaks (DSBs). In this study, dual adeno-associated virus (AAV) vectors containing split adenine base editors (ABEs) with trans-splicing intein were prepared for in vivo base editing in retinal degeneration of 12 (rd12) mice, an animal model of LCA, possessing a nonsense mutation of C to T transition in the Rpe65 gene (p.R44X). Subretinal injection of AAV-ABE in retinal pigment epithelial cells of rd12 mice resulted in an A to G transition. The on-target editing was sufficient for recovery of wild-type mRNA, RPE65 protein, and light-induced electrical responses from the retina. Compared with our previous therapeutic editing strategies using Cas9 and prime editing, or with the gene transfer strategy shown in the current study, our results suggest that, considering the editing efficacy and functional recovery, ABEs could be a strong, reliable method for correction of pathogenic variants in the treatment of LCA.

2.
Mol Ther Nucleic Acids ; 27: 175-183, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34976436

RESUMEN

Precise genome editing of human pluripotent stem cells (hPSCs) is crucial not only for basic science but also for biomedical applications such as ex vivo stem cell therapy and genetic disease modeling. However, hPSCs have unique cellular properties compared to somatic cells. For instance, hPSCs are extremely susceptible to DNA damage, and therefore Cas9-mediated DNA double-strand breaks (DSB) induce p53-dependent cell death, resulting in low Cas9 editing efficiency. Unlike Cas9 nucleases, base editors including cytosine base editor (CBE) and adenine base editor (ABE) can efficiently substitute single nucleotides without generating DSBs at target sites. Here, we found that the editing efficiency of CBE was significantly lower than that of ABE in human embryonic stem cells (hESCs), which are associated with high expression of DNA glycosylases, the key component of the base excision repair pathway. Sequential depletion of DNA glycosylases revealed that high expression of uracil DNA glycosylase (UNG) not only resulted in low editing efficiency but also affected CBE product purity (i.e., C to T) in hESCs. Therefore, additional suppression of UNG via transient knockdown would also improve C to T base substitutions in hESCs. These data suggest that the unique cellular characteristics of hPSCs could determine the efficiency of precise genome editing.

3.
Chem Commun (Camb) ; 58(12): 1978-1981, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35045150

RESUMEN

CRISPR-Cas12a has been widely used in genome editing and nucleic acid detection. In both of these applications, Cas12a cleaves target DNA in a divalent metal ion-dependent manner. However, when and how metal ions contribute to the cleavage reaction is unclear. Here, using a single-molecule FRET assay, we reveal that these metal ions are necessary for stabilising cleavage-competent conformations and that they are easily exchangeable, suggesting that they are dynamically coordinated.


Asunto(s)
Sistemas CRISPR-Cas , ADN/genética , Metales/química , Cationes Bivalentes , Transferencia Resonante de Energía de Fluorescencia/métodos , Edición Génica/métodos , Conformación de Ácido Nucleico
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34853172

RESUMEN

CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)-distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Estructuras R-Loop/genética , Sistemas CRISPR-Cas/fisiología , ADN/química , División del ADN/efectos de los fármacos , Desoxirribonucleasa I/metabolismo , Edición Génica , Magnesio/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico/efectos de los fármacos , ARN Guía de Kinetoplastida/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos
5.
Nucleic Acids Res ; 49(19): 11312-11322, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34554247

RESUMEN

There have been many engineered Cas9 variants that were developed to minimize unintended cleavage of off-target DNAs, but detailed mechanism for the way they regulate the target specificity through DNA:RNA heteroduplexation remains poorly understood. We used single-molecule FRET assay to follow the dynamics of DNA:RNA heteroduplexation for various engineered Cas9 variants with respect to on-target and off-target DNAs. Just like wild-type Cas9, these engineered Cas9 variants exhibit a strong correlation between their conformational structure and nuclease activity. Compared with wild-type Cas9, the fraction of the cleavage-competent state dropped more rapidly with increasing base-pair mismatch, which gives rise to their enhanced target specificity. We proposed a reaction model to quantitatively analyze the degree of off-target discrimination during the successive process of R-loop expansion. We found that the critical specificity enhancement step is activated during DNA:RNA heteroduplexation for evoCas9 and HypaCas9, while it occurs in the post-heteroduplexation stage for Cas9-HF1, eCas9, and Sniper-Cas9. This study sheds new light on the conformational dynamics behind the target specificity of Cas9, which will help strengthen its rational designing principles in the future.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , ADN/genética , ARN/genética , Imagen Individual de Molécula/métodos , Emparejamiento Base , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , Clonación Molecular , ADN/química , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Moleculares , Mutación , Hibridación de Ácido Nucleico , Conformación Proteica , Ingeniería de Proteínas/métodos , ARN/química , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Sci Adv ; 7(35)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34452911

RESUMEN

Ribonucleoprotein (RNP) complex-mediated base editing is expected to be greatly beneficial because of its reduced off-target effects compared to plasmid- or viral vector-mediated gene editing, especially in therapeutic applications. However, production of recombinant cytosine base editors (CBEs) or adenine base editors (ABEs) with ample yield and high purity in bacterial systems is challenging. Here, we obtained highly purified CBE/ABE proteins from a human cell expression system and showed that CBE/ABE RNPs exhibited different editing patterns (i.e., less conversion ratio of multiple bases to single base) compared to plasmid-encoded CBE/ABE, mainly because of the limited life span of RNPs in cells. Furthermore, we found that off-target effects in both DNA and RNA were greatly reduced for ABE RNPs compared to plasmid-encoded ABE. We ultimately applied NG PAM-targetable ABE RNPs to in vivo gene correction in retinal degeneration 12 (rd12) model mice.


Asunto(s)
Edición Génica , Ribonucleoproteínas , Animales , Sistemas CRISPR-Cas , Citosina/metabolismo , ADN/genética , Ratones , ARN , Ribonucleoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...