Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Biol Anthropol ; 177(3): 581-602, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35755956

RESUMEN

Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. 100 landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including Generalized Procrustes Analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.


Asunto(s)
Atelinae , Falanges de los Dedos de la Mano , Hominidae , Animales , Diáfisis/diagnóstico por imagen , Falanges de los Dedos de la Mano/diagnóstico por imagen , Gorilla gorilla
2.
J Hum Evol ; 131: 152-175, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31182200

RESUMEN

The KNM-ER 64060 dentition derives from a horizon that most likely dates to between 2.02 and 2.03 Ma. A proximate series of postcranial bones (designated KNM-ER 64061) derives from the same siltstone unit and may be associated with the dentition, but their separation on the surface of the site leaves some room for doubt. KNM-ER 64060 is one of fewer than ten hominin specimens from the Early Pleistocene of East Africa that comprises a full or nearly complete mandibular dentition. Its taxonomic attribution is potentially significant, especially if the postcranial elements are related. At least three, and probably four hominin species, including Paranthropus boisei and Homo erectus (= H. ergaster), are known at about this time in East Africa. Other penecontemporaneous fossils have been referred to a single, highly variable species, H. habilis, or two taxa, namely H. habilis and H. rudolfensis. Although the weight of evidence supports the attribution of these specimens to two species, there is notable lack of agreement over the assignation of individual fossils. We take a conservative approach and group all such specimens under the designation "early Homo sp." for comparative purposes. KNM-ER 64060 is clearly attributable to Homo rather than Paranthropus. The preponderance of the evidence suggests that the affinities of KNM-ER 64060 are with fossils assigned to the early Homo sp. category rather than with H. erectus. This is indicated by the overall sizes of the KNM-ER 64060 canine, premolar and molar crowns, the size relationships of the P3 to P4, the relative narrowness of its premolar crowns, the cusp proportions of the M1 and especially those of the M2 and M3, and seemingly the possession of a two-rooted P4. Some of these comparisons suggest further that among the fossils comprising the early Homo sp. sample, the KNM-ER 64060 dentition exhibits greater overall similarity to specimens such as OH 7 and OH 16 that represent Homo habilis sensu stricto.


Asunto(s)
Dentición Permanente , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Mandíbula , Diente/anatomía & histología , Animales , Kenia
3.
Proc Natl Acad Sci U S A ; 115(35): 8746-8751, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104373

RESUMEN

The primate foot functions as a grasping organ. As such, its bones, soft tissues, and joints evolved to maximize power and stability in a variety of grasping configurations. Humans are the obvious exception to this primate pattern, with feet that evolved to support the unique biomechanical demands of bipedal locomotion. Of key functional importance to bipedalism is the morphology of the joints at the forefoot, known as the metatarsophalangeal joints (MTPJs), but a comprehensive analysis of hominin MTPJ morphology is currently lacking. Here we present the results of a multivariate shape and Bayesian phylogenetic comparative analyses of metatarsals (MTs) from a broad selection of anthropoid primates (including fossil apes and stem catarrhines) and most of the early hominin pedal fossil record, including the oldest hominin for which good pedal remains exist, Ardipithecus ramidus Results corroborate the importance of specific bony morphologies such as dorsal MT head expansion and "doming" to the evolution of terrestrial bipedalism in hominins. Further, our evolutionary models reveal that the MT1 of Ar. ramidus shifts away from the reconstructed optimum of our last common ancestor with apes, but not necessarily in the direction of modern humans. However, the lateral rays of Ar. ramidus are transformed in a more human-like direction, suggesting that they were the digits first recruited by hominins into the primary role of terrestrial propulsion. This pattern of evolutionary change is seen consistently throughout the evolution of the foot, highlighting the mosaic nature of pedal evolution and the emergence of a derived, modern hallux relatively late in human evolution.


Asunto(s)
Evolución Biológica , Hominidae , Huesos Metatarsianos , Filogenia , Animales , Hominidae/anatomía & histología , Hominidae/fisiología , Huesos Metatarsianos/anatomía & histología , Huesos Metatarsianos/fisiología
4.
J Hum Evol ; 122: 84-92, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29910044

RESUMEN

Many hypotheses regarding the paleobiology of the earliest possible hominins, Orrorin tugenensis and Ardipithecus ramidus, are dependent upon accurate body mass estimates for these taxa. While we have previously published body mass predictions for Orrorin and Ardipithecus, the accuracies of those estimates depend on the assumption that the postcranial skeletal dimensions and body masses of these taxa followed scaling patterns that were similar to those observed in modern humans. This assumption may not be correct because certain aspects of postcranial morphology in Orrorin and Ardipithecus differ from modern humans, and suggest that their overall body plans might be unique but more similar to modern non-human great apes than to modern humans. Here we present individual body mass predictions for O. tugenensis and Ar. ramidus assuming that they followed postcranial scaling patterns similar to those of chimpanzees. All estimates include individual prediction intervals as measures of uncertainty. In addition, we provide equations for predicting body mass from univariate postcranial measurements based on the largest sample (n = 25) yet compiled of common chimpanzee skeletons with known body masses, which is vital for calculating prediction intervals for individual fossils. Our results show that estimated body masses in Orrorin and Ardipithecus are generally larger when derived from a chimpanzee-like scaling pattern compared to estimates that assume a human-like pattern, though the prediction intervals of the two sets of estimates overlap. In addition, the more complete of the two known Orrorin femora has an overall scaling pattern that is more similar to common chimpanzees than to modern humans, supporting the application of a non-human great ape comparative model. Our new estimates fall near the male (Ardipithecus) average and in between the male and female averages (Orrorin) for wild-caught common chimpanzees. If a chimpanzee-like pattern of scaling between postcranial dimensions and body mass did exist in these earliest hominins, our results suggest the large body masses found in some early australopiths were already present in taxa near the origins of our lineage, and perhaps also in the Pan-Homo last common ancestor.


Asunto(s)
Evolución Biológica , Peso Corporal , Hominidae/fisiología , Animales , Femenino , Masculino
5.
Nat Commun ; 8(1): 880, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026075

RESUMEN

Body mass directly affects how an animal relates to its environment and has a wide range of biological implications. However, little is known about the mass of the last common ancestor (LCA) of humans and chimpanzees, hominids (great apes and humans), or hominoids (all apes and humans), which is needed to evaluate numerous paleobiological hypotheses at and prior to the root of our lineage. Here we use phylogenetic comparative methods and data from primates including humans, fossil hominins, and a wide sample of fossil primates including Miocene apes from Africa, Europe, and Asia to test alternative hypotheses of body mass evolution. Our results suggest, contrary to previous suggestions, that the LCA of all hominoids lived in an environment that favored a gibbon-like size, but a series of selective regime shifts, possibly due to resource availability, led to a decrease and then increase in body mass in early hominins from a chimpanzee-sized LCA.The pattern of body size evolution in hominids can provide insight into historical human ecology. Here, Grabowski and Jungers use comparative phylogenetic analysis to reconstruct the likely size of the ancestor of humans and chimpanzees and the evolutionary history of selection on body size in primates.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Hominidae/anatomía & histología , Filogenia , Animales , Ambiente , Fósiles , Humanos , Fenómenos Fisiológicos Musculoesqueléticos , Pan troglodytes/anatomía & histología
7.
J Hum Evol ; 107: 107-133, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28438318

RESUMEN

Although the diminutive Homo floresiensis has been known for a decade, its phylogenetic status remains highly contentious. A broad range of potential explanations for the evolution of this species has been explored. One view is that H. floresiensis is derived from Asian Homo erectus that arrived on Flores and subsequently evolved a smaller body size, perhaps to survive the constrained resources they faced in a new island environment. Fossil remains of H. erectus, well known from Java, have not yet been discovered on Flores. The second hypothesis is that H. floresiensis is directly descended from an early Homo lineage with roots in Africa, such as Homo habilis; the third is that it is Homo sapiens with pathology. We use parsimony and Bayesian phylogenetic methods to test these hypotheses. Our phylogenetic data build upon those characters previously presented in support of these hypotheses by broadening the range of traits to include the crania, mandibles, dentition, and postcrania of Homo and Australopithecus. The new data and analyses support the hypothesis that H. floresiensis is an early Homo lineage: H. floresiensis is sister either to H. habilis alone or to a clade consisting of at least H. habilis, H. erectus, Homo ergaster, and H. sapiens. A close phylogenetic relationship between H. floresiensis and H. erectus or H. sapiens can be rejected; furthermore, most of the traits separating H. floresiensis from H. sapiens are not readily attributable to pathology (e.g., Down syndrome). The results suggest H. floresiensis is a long-surviving relict of an early (>1.75 Ma) hominin lineage and a hitherto unknown migration out of Africa, and not a recent derivative of either H. erectus or H. sapiens.


Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , África , Animales , Teorema de Bayes , Femenino , Hominidae/clasificación , Humanos , Islas , Filogenia
8.
Elife ; 52016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27964779

RESUMEN

New fossil footprints excavated at the famous Laetoli site in Tanzania suggest that our bipedal ancestors had a wide range of body sizes.


Asunto(s)
Hominidae , Animales , Tamaño Corporal , Fósiles , Tanzanía , Caminata
9.
Sci Rep ; 6: 30532, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27464580

RESUMEN

During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.


Asunto(s)
Pie/anatomía & histología , Pie/fisiología , Hominidae , Articulación Metatarsofalángica/fisiología , Animales , Fenómenos Biomecánicos , Fósiles , Cabeza/anatomía & histología , Hominidae/anatomía & histología , Hominidae/fisiología , Humanos , Imagenología Tridimensional , Articulación Metatarsofalángica/anatomía & histología , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología , Caminata
10.
Artículo en Inglés | MEDLINE | ID: mdl-27298459

RESUMEN

Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the 'best' for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans.This article is part of the themed issue 'Major transitions in human evolution'.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Hominidae/fisiología , África , Animales , Fósiles , Humanos
11.
Nature ; 532(7599): 366-9, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27027286

RESUMEN

Homo floresiensis, a primitive hominin species discovered in Late Pleistocene sediments at Liang Bua (Flores, Indonesia), has generated wide interest and scientific debate. A major reason this taxon is controversial is because the H. floresiensis-bearing deposits, which include associated stone artefacts and remains of other extinct endemic fauna, were dated to between about 95 and 12 thousand calendar years (kyr) ago. These ages suggested that H. floresiensis survived until long after modern humans reached Australia by ~50 kyr ago. Here we report new stratigraphic and chronological evidence from Liang Bua that does not support the ages inferred previously for the H. floresiensis holotype (LB1), ~18 thousand calibrated radiocarbon years before present (kyr cal. BP), or the time of last appearance of this species (about 17 or 13-11 kyr cal. BP). Instead, the skeletal remains of H. floresiensis and the deposits containing them are dated to between about 100 and 60 kyr ago, whereas stone artefacts attributable to this species range from about 190 to 50 kyr in age. Whether H. floresiensis survived after 50 kyr ago--potentially encountering modern humans on Flores or other hominins dispersing through southeast Asia, such as Denisovans--is an open question.


Asunto(s)
Arqueología , Fósiles , Hominidae , Datación Radiométrica , Silicatos de Aluminio , Animales , Australia , Calibración , Cuevas , Sedimentos Geológicos/análisis , Vidrio , Humanos , Indonesia , Compuestos de Potasio , Cuarzo , Factores de Tiempo , Incertidumbre
12.
Am J Phys Anthropol ; 159(Suppl 61): S4-S18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26808111

RESUMEN

Gorillas living in western central Africa (Gorilla gorilla) are morphologically and genetically distinguishable from those living in eastern central Africa (Gorilla beringei). Genomic analyses show eastern gorillas experienced a significant reduction in population size during the Pleistocene subsequent to geographical isolation from their western counterparts. However, how these results relate more specifically to the recent biogeographical and evolutionary history of eastern gorillas remains poorly understood. Here we show that two rare morphological traits are present in the hands and feet of both eastern gorilla subspecies at strikingly high frequencies (>60% in G. b. graueri; ∼28% in G. b. beringei) in comparison with western gorillas (<1%). The intrageneric distribution of these rare traits suggests that they became common among eastern gorillas after diverging from their western relatives during the early to middle Pleistocene. The extremely high frequencies observed among grauer gorillas-which currently occupy a geographic range more than ten times the size of that of mountain gorillas-imply that grauers originated relatively recently from a small founding population of eastern gorillas. Current paleoenvironmental, geological, and biogeographical evidence supports the hypothesis that a small group of eastern gorillas likely dispersed westward from the Virungas into present-day grauer range in the highlands just north of Lake Kivu, either immediately before or directly after the Younger Dryas interval. We propose that as the lowland forests of central Africa expanded rapidly during the early Holocene, they became connected with the expanding highland forests along the Albertine Rift and enabled the descendants of this small group to widely disperse. The descendant populations significantly expanded their geographic range and population numbers relative to the gorillas of the Virunga Mountains and the Bwindi-Impenetrable Forest, ultimately resulting in the grauer gorilla subspecies recognized today. This founder-effect hypothesis offers some optimism for modern conservation efforts to save critically endangered eastern gorillas from extinction.


Asunto(s)
Evolución Biológica , Gorilla gorilla , África Central , África Oriental , Animales , Ambiente , Femenino , Huesos del Pie/anatomía & histología , Fósiles , Gorilla gorilla/anatomía & histología , Gorilla gorilla/clasificación , Gorilla gorilla/genética , Gorilla gorilla/fisiología , Masculino , Filogenia
13.
J Hum Evol ; 86: 136-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26276534

RESUMEN

Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins.


Asunto(s)
Cercopithecidae/anatomía & histología , Cercopithecidae/fisiología , Hominidae/anatomía & histología , Hominidae/fisiología , Huesos Metatarsianos/anatomía & histología , Huesos Metatarsianos/fisiología , Caminata/fisiología , Animales , Evolución Biológica , Fósiles , Humanos
14.
Nat Commun ; 6: 7717, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26171589

RESUMEN

Human hands are distinguished from apes by possessing longer thumbs relative to fingers. However, this simple ape-human dichotomy fails to provide an adequate framework for testing competing hypotheses of human evolution and for reconstructing the morphology of the last common ancestor (LCA) of humans and chimpanzees. We inspect human and ape hand-length proportions using phylogenetically informed morphometric analyses and test alternative models of evolution along the anthropoid tree of life, including fossils like the plesiomorphic ape Proconsul heseloni and the hominins Ardipithecus ramidus and Australopithecus sediba. Our results reveal high levels of hand disparity among modern hominoids, which are explained by different evolutionary processes: autapomorphic evolution in hylobatids (extreme digital and thumb elongation), convergent adaptation between chimpanzees and orangutans (digital elongation) and comparatively little change in gorillas and hominins. The human (and australopith) high thumb-to-digits ratio required little change since the LCA, and was acquired convergently with other highly dexterous anthropoids.


Asunto(s)
Evolución Biológica , Dedos/anatomía & histología , Fósiles , Animales , Gorilla gorilla , Mano/anatomía & histología , Hominidae , Humanos , Tamaño de los Órganos , Pan troglodytes , Filogenia , Pongo
15.
J Hum Evol ; 85: 75-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26094042

RESUMEN

Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins.


Asunto(s)
Evolución Biológica , Tamaño Corporal/fisiología , Fósiles , Hominidae/fisiología , Animales , Femenino , Humanos , Masculino , Modelos Estadísticos , Paleontología
16.
Anat Rec (Hoboken) ; 298(1): 212-29, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529242

RESUMEN

Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures.


Asunto(s)
Hueso Ganchoso/anatomía & histología , Hueso Ganchoso/fisiología , Haplorrinos/anatomía & histología , Haplorrinos/fisiología , Matemática , Filogenia , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Cebidae , Hominidae , Humanos , Hylobates , Imagenología Tridimensional , Locomoción/fisiología , Análisis de Componente Principal , Muñeca/anatomía & histología , Muñeca/fisiología
17.
J Hum Evol ; 68: 36-46, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24560803

RESUMEN

The hypodigm of Homo floresiensis from the cave of Liang Bua on Flores Island in the archipelago of Indonesia includes two mandibles (LB1/2 and LB6/1). The morphology of their symphyses and corpora has been described as sharing similarities with both australopiths and early Homo despite their Late Pleistocene age. Although detailed morphological comparisons of these mandibles with those of modern and fossil hominin taxa have been made, a functional analysis in the context of masticatory biomechanics has yet to be performed. Utilizing data on cortical bone geometry from computed tomography scans, we compare the mechanical attributes of the LB1 and LB6 mandibles with samples of modern Homo, Pan, Pongo, and Gorilla, as well as fossil samples of Paranthropus robustus, Australopithecus africanus and South African early Homo. Structural stiffness measures were derived from the geometric data to provide relative measures of mandibular corpus strength under hypothesized masticatory loading regimes. These mechanical variables were evaluated relative to bone area, mandibular length and estimates of body size to assess their functional affinities and to test the hypothesis that the Liang Bua mandibles can be described as scaled-down variants of either early hominins or modern humans. Relative to modern hominoids, the H. floresiensis material appears to be relatively strong in terms of rigidity in torsion and transverse bending, but is relatively weak under parasagittal bending. Thus, they are 'robust' relative to modern humans (and comparable with australopiths) under some loads but not others. Neither LB1 nor LB6 can be described simply as 'miniaturized' versions of modern human jaws since mandible length is more or less equivalent in Homo sapiens and H. floresiensis. The mechanical attributes of the Liang Bua mandibles are consistent with previous inferences that masticatory loads were reduced relative to australopiths but remained elevated relative to modern Homo.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Fósiles , Hominidae/anatomía & histología , Mandíbula/anatomía & histología , Mandíbula/fisiología , Animales , Femenino , Masculino , Mandíbula/diagnóstico por imagen , Tomografía Computarizada por Rayos X
18.
Evolution ; 68(5): 1450-68, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24451053

RESUMEN

Adaptive radiations provide important insights into many aspects of evolution, including the relationship between ecology and morphological diversification as well as between ecology and speciation. Many such radiations include divergence along a dietary axis, although other ecological variables may also drive diversification, including differences in diel activity patterns. This study examines the role of two key ecological variables, diet and activity patterns, in shaping the radiation of a diverse clade of primates, the Malagasy lemurs. When phylogeny was ignored, activity pattern and several dietary variables predicted a significant proportion of cranial shape variation. However, when phylogeny was taken into account, only typical diet accounted for a significant proportion of shape variation. One possible explanation for this discrepancy is that this radiation was characterized by a relatively small number of dietary shifts (and possibly changes in body size) that occurred in conjunction with the divergence of major clades. This pattern may be difficult to detect with the phylogenetic comparative methods used here, but may characterize not just lemurs but other mammals.


Asunto(s)
Ecosistema , Especiación Genética , Filogenia , Cráneo/anatomía & histología , Strepsirhini/genética , Animales , Dieta , Conducta Alimentaria , Strepsirhini/anatomía & histología , Strepsirhini/fisiología
19.
Am J Phys Anthropol ; 153(4): 526-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24374860

RESUMEN

Gorillas occupy a variety of habitats from the west coast to eastern central Africa. These habitats differ considerably in altitude, which has a pronounced effect on forest ecology. Although all gorillas are obligate terrestrial knuckle-walking quadrupeds, those that live in lowland habitats eat fruits and climb more often than do those living in highland habitats. Here we test the hypothesis that gorilla talus morphology falls along a morphocline that tracks locomotor function related to a more inverted or everted foot set. This proposed morphocline predicts that gorillas living in lowland habitats may have a talocrural joint configured to facilitate a more medially oriented foot during climbing, suggesting that they may be more adaptively committed to arboreality than gorillas living in highland habitats. To quantify the relative set of the foot in gorillas, we chose two three-dimensional measurements of the talocrural joint: mediolateral curvature of the trochlea and relative surface area of the lateral malleolus. Our results show that, in comparison to their eastern counterparts, western gorillas have talar features that reflect a more medially directed sole of the foot. This morphology likely facilitates foot placement in a wider range of positions and minimization of shearing stresses across the joint when the foot is loaded on more curved or vertically oriented substrates as occurs during climbing and other arboreal behaviors. In contrast, eastern gorilla talar morphology is consistent with habitual placement of the foot with the sole directed more inferiorly, suggesting more effective loading during plantigrade push-off on terrestrial substrates.


Asunto(s)
Gorilla gorilla/anatomía & histología , Gorilla gorilla/clasificación , Astrágalo/anatomía & histología , Análisis de Varianza , Animales , Calcáneo/anatomía & histología , Calcáneo/fisiología , Ecosistema , Femenino , Gorilla gorilla/fisiología , Masculino , Astrágalo/fisiología
20.
Nat Commun ; 4: 2888, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24301078

RESUMEN

Orrorin tugenensis (Kenya, ca. 6 Ma) is one of the earliest putative hominins. Its proximal femur, BAR 1002'00, was originally described as being very human-like, although later multivariate analyses showed an australopith pattern. However, some of its traits (for example, laterally protruding greater trochanter, medially oriented lesser trochanter and presence of third trochanter) are also present in earlier Miocene apes. Here, we use geometric morphometrics to reassess the morphological affinities of BAR 1002'00 within a large sample of anthropoids (including fossil apes and hominins) and reconstruct hominoid proximal femur evolution using squared-change parsimony. Our results indicate that both hominin and modern great ape femora evolved in different directions from a primitive morphology represented by some fossil apes. Orrorin appears intermediate between Miocene apes and australopiths in shape space. This evidence is consistent with femoral shape similarities in extant great apes being derived and homoplastic and has profound implications for understanding the origins of human bipedalism.


Asunto(s)
Fémur/anatomía & histología , Hominidae/anatomía & histología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Fósiles , Kenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...