Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687825

RESUMEN

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Asunto(s)
Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Plasticidad Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Humanos , Receptores AMPA/metabolismo , Receptores AMPA/genética , Ratones , Plasticidad Neuronal/fisiología , Hipocampo/metabolismo , Vía de Señalización Hippo , Serina-Treonina Quinasa 3 , Transducción de Señal , Memoria/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Factor de Crecimiento de Hepatocito/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/metabolismo , Fosforilación , Neuronas/metabolismo
2.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528004

RESUMEN

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Proteínas Cromosómicas no Histona , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromosómicas no Histona/metabolismo , Citocinas/metabolismo , Inflamasomas/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066393

RESUMEN

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...