Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 29(6): 888-97, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19881537

RESUMEN

The germinal center (GC) reaction has a pivotal function in human B-cell lymphomagenesis. Genetic aberrations occurring during somatic hypermutation and class switch recombination deregulate key factors controlling B-cell physiology and proliferation. Several human lymphoma entities are characterized by a constitutive GC phenotype and ongoing somatic hypermutation, but the molecular basis for this phenomenon is only partly understood. We have investigated the reasons for a constitutive GC-like program in Burkitt's lymphoma cells. Here, overexpression of c-Myc leads to a centroblast phenotype, promotes high constitutive expression of the key GC factors Bcl-6, E2A and activation-induced cytidine deaminase and contributes to proliferation and somatic hypermutation. Our findings elucidate how the activity of a pivotal transcription factor may freeze B-cell lymphoma cells in a constitutive GC-like state that is even maintained at an extrafollicular location.


Asunto(s)
Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Regulación Neoplásica de la Expresión Génica , Centro Germinal/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Linfocitos B/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linfoma de Burkitt/genética , Línea Celular Tumoral , Citidina Desaminasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Centro Germinal/metabolismo , Humanos , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-6 , Proteínas Proto-Oncogénicas c-myc/genética , Hipermutación Somática de Inmunoglobulina
2.
J Exp Med ; 192(12): 1833-40, 2000 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11120779

RESUMEN

Somatic hypermutation specifically modifies rearranged immunoglobulin (Ig) genes in germinal center (GC) B cells. However, the bcl-6 gene can also acquire somatic mutations during the GC reaction, indicating that certain non-Ig genes can be targeted by the somatic hypermutation machinery. The CD95 gene, implicated in negative selection of B lymphocytes in GCs, is specifically expressed by GC B cells and was recently identified as a tumor suppressor gene being frequently mutated in (post) GC B cell lymphomas. In this study, the 5' region (5'R) and/or the last exon coding for the death domain (DD) of the CD95 gene were investigated in naive, GC, and memory B cells from seven healthy donors. About 15% of GC and memory, but not naive, B cells carried mutations within the 5'R (mutation frequency 2.5 x 10(-4) per basepair). Mutations within the DD were very rare but could be efficiently selected by inducing CD95-mediated apoptosis: in 22 apoptosis-resistant cells, 12 DD mutations were found. These results indicate that human B cells can acquire somatic mutations of the CD95 gene during the GC reaction, which potentially confers apoptosis resistance and may counteract negative selection through the CD95 pathway.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Centro Germinal/inmunología , Mutagénesis/genética , Receptor fas/genética , Apoptosis , Clonación Molecular , Análisis Mutacional de ADN , Exones/genética , Citometría de Flujo , Genes Supresores de Tumor/genética , Humanos , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Análisis de Secuencia , Transducción de Señal , Receptor fas/química , Receptor fas/inmunología
3.
J Exp Med ; 191(2): 395-402, 2000 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-10637284

RESUMEN

Members of the nuclear factor (NF)-kappaB family of transcription factors play a crucial role in cellular activation, immune responses, and oncogenesis. In most cells, they are kept inactive in the cytosol by complex formation with members of the inhibitor of NF-kappaB (IkappaB) family, whose degradation activates NF-kappaB in response to diverse stimuli. In Hodgkin's lymphoma (HL), high constitutive nuclear activity of NF-kappaB is characteristic of the malignant Hodgkin and Reed-Sternberg (H/RS) cells, which occur at low number in a background of nonneoplastic inflammatory cells. In single H/RS cells micromanipulated from histological sections of HL, we detect clonal deleterious somatic mutations in the IkappaBalpha gene in two of three Epstein-Barr virus (EBV)-negative cases but not in two EBV-positive cases (in which a viral oncogene may account for NF-kappaB activation). There was no evidence for IkappaBalpha mutations in two non-HL entities or in normal germinal center B cells. This study establishes deleterious IkappaBalpha mutations as the first recurrent genetic defect found in H/RS cells, indicating a role of IkappaBalpha defects in the pathogenesis of HL and implying that IkappaBalpha is a tumor suppressor gene.


Asunto(s)
Proteínas de Unión al ADN/genética , Eliminación de Gen , Enfermedad de Hodgkin/genética , Proteínas I-kappa B , Adulto , Niño , Femenino , Humanos , Masculino , Inhibidor NF-kappaB alfa , Células Tumorales Cultivadas
4.
J Cell Biol ; 142(2): 355-64, 1998 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-9679136

RESUMEN

We have investigated the role of membrane proteins and lipids during early phases of the cotranslational insertion of secretory proteins into the translocation channel of the endoplasmic reticulum (ER) membrane. We demonstrate that all steps, including the one during which signal sequence recognition occurs, can be reproduced with purified translocation components in detergent solution, in the absence of bulk lipids or a bilayer. Photocross-linking experiments with native membranes show that upon complete insertion into the channel signal sequences are both precisely positioned with respect to the protein components of the channel and contact lipids. Together, these results indicate that signal sequences are bound to a specific binding site at the interface between the channel and the surrounding lipids, and are recognized ultimately by protein-protein interactions. Our data also suggest that at least some signal sequences reach the binding site by transfer through the interior of the channel.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Partícula de Reconocimiento de Señal/metabolismo , Animales , Sitios de Unión , Transporte Biológico Activo , Reactivos de Enlaces Cruzados , Detergentes , Perros , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/genética , Prolactina/genética , Prolactina/metabolismo , Biosíntesis de Proteínas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ribosomas/metabolismo , Canales de Translocación SEC , Partícula de Reconocimiento de Señal/genética , Soluciones
5.
Mol Biol Cell ; 9(1): 103-15, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9436994

RESUMEN

Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC-SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transactivadores , Animales , Unión Competitiva , Bovinos , Citosol/metabolismo , Perros , Chaperonas Moleculares , Unión Proteica , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/fisiología , Proteínas/fisiología , Reticulocitos/metabolismo , Ribosomas/fisiología , Partícula de Reconocimiento de Señal/fisiología , Fracciones Subcelulares/metabolismo
6.
Cell ; 87(4): 721-32, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8929540

RESUMEN

The heterotrimeric Sec61p complex is a major component of the protein-conducting channel of the endoplasmic reticulum (ER) membrane, associating with either ribosomes or the Sec62/63 complex to perform co- and posttranslational transport, respectively. We show by electron microscopy that purified mammalian and yeast Sec61p complexes in detergent form cylindrical oligomers with a diameter of approximately 85 A and a central pore of approximately 20 A. Each oligomer contains 3-4 heterotrimers. Similar ring structures are seen in reconstituted proteoliposomes and native membranes. Oligomer formation by the reconstituted Sec61p complex is stimulated by its association with ribosomes or the Sec62/63p complex. We propose that these cylindrical oligomers represent protein-conducting channels of the ER, formed by ligands specific for co- and posttranslational transport.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Proteínas de Choque Térmico , Canales Iónicos/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas de Transporte de Membrana , Proteolípidos/ultraestructura , Proteínas de Saccharomyces cerevisiae , Animales , Transporte Biológico , Compartimento Celular , Detergentes , Perros , Técnica de Fractura por Congelación , Proteínas Fúngicas/metabolismo , Aumento de la Imagen , Activación del Canal Iónico , Sustancias Macromoleculares , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Peso Molecular , Movimiento (Física) , Coloración Negativa , Tamaño de la Partícula , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Ribosomas/metabolismo , Canales de Translocación SEC , Levaduras
7.
Curr Opin Cell Biol ; 8(4): 499-504, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8791447

RESUMEN

Since the identification of essential protein-translocation components in the endoplasmic reticulum membrane, research efforts have concentrated on the elucidation of the molecular mechanism of protein transport across this membrane. Recent results have provided new information as to how proteins are targeted to, and inserted into, the translocation site during translation. Post-translational translocation has also been examined and is distinct from cotranslational translocation with respect to the mechanism and membrane protein components involved.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Transporte Biológico , Modelos Biológicos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional
8.
J Cell Biol ; 134(1): 25-35, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8698819

RESUMEN

Cotranslational translocation of proteins across the mammalian ER membrane involves, in addition to the signal recognition particle receptor and the Sec61p complex, the translocating chain-associating membrane (TRAM) protein, the function of which is still poorly understood. Using reconstituted proteoliposomes, we show here that the translocation of most, but not all, secretory proteins requires the function of TRAM. Experiments with hybrid proteins demonstrate that the structure of the signal sequence determines whether or not TRAM is needed. Features that distinguish TRAM-dependent and -independent signal sequences include the length of their charged, NH2-terminal region and the structure of their hydrophobic core. In cases where TRAM is required for translocation, it is not needed for the initial interaction of the ribosome/nascent chain complex with the ER membrane but for a subsequent step inside the membrane in which the nascent chain is inserted into the translocation site in a protease-resistant manner. Thus, TRAM functions in a signal sequence-dependent manner at a critical, early phase of the translocation process.


Asunto(s)
Retículo Endoplásmico Rugoso/metabolismo , Glicoproteínas de Membrana/metabolismo , Señales de Clasificación de Proteína/fisiología , Secuencia de Aminoácidos , Animales , Transporte Biológico , Sistema Libre de Células , Perros , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Canales de Translocación SEC , Solubilidad , Relación Estructura-Actividad
9.
Nature ; 381(6579): 248-51, 1996 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-8622769

RESUMEN

The signal-recognition particle (SRP) is important for the targeting of many secretory and membrane proteins to the endoplasmic reticulum (ER). Targeting is regulated by three GTPases, the 54K subunit of SRP (SRP54), and the alpha- and beta-subunits of the SRP receptor. When a signal sequence emerges from the ribosome, SRP interacts with it and targets the resulting complex to the ER membrane by binding to the SRP receptor. Subsequently, SRP releases the signal sequence into the translocation channel. Here we use a complex of a ribosome with a nascent peptide chain, the SRP and its receptor, to investigate GTP binding to SRP54, and GTP hydrolysis. Our findings indicate that a ribosomal component promotes GTP binding to the SRP54 subunit of SRP. GTP-bound SRP54 is essential for high-affinity interaction between SRP and its receptor in the ER membrane. This interaction induces the release of the signal sequence from SRP, the insertion of the nascent polypeptide chain into the translocation channel, and GTP hydrolysis. The contribution of the ribosome had previously escaped detection because only synthetic signal peptides were used in the analysis.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Bases , Transporte Biológico/efectos de la radiación , Retículo Endoplásmico/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Prolactina/metabolismo , Unión Proteica , Precursores de Proteínas/metabolismo , Señales de Clasificación de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Rayos Ultravioleta
10.
Annu Rev Biochem ; 65: 271-303, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8811181

RESUMEN

Protein transport across the endoplasmic reticulum membrane can occur by two pathways, a co- and a post-translational one. In both cases, polypeptides are first targeted to translocation sites in the membrane by virtue of their signal sequences and then transported across or inserted into the phospholipid bilayer, most likely through a protein-conducting channel. Key components of the translocation apparatus have now been identified and the translocation pathways seem likely to be related to each other but mechanistically distinct. Protein transport across the bacterial inner membrane is both similar to and different from the process in eukaryotes. Other pathways of protein translocation exist that bypass the ones involving classical signal sequences.


Asunto(s)
Bacterias/metabolismo , Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas/metabolismo , Transporte Biológico
11.
Biochem Biophys Res Commun ; 217(1): 68-73, 1995 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-8526941

RESUMEN

Ricin A chain is a polypeptide of 267 amino acids containing a hydrophobic region near its carboxyl-terminus (residues 245-256) which has been implicated in the membrane translocation step necessary for this catalytically active toxin to reach its intracellular substrate. DNA fusions were constructed that encoded hybrid proteins consisting of carboxyl-terminal residues 233-267 or residues 238-267 of ricin A chain preceding mouse dihydrofolate reductase. When in vitro transcripts prepared from these constructs were translated in cell-free systems, the ricin A chain-derived sequences functioned as efficient signal peptides which directed dihydrofolate reductase into microsomes or into proteoliposomes containing microsomal membrane components.


Asunto(s)
Señales de Clasificación de Proteína/química , Señales de Clasificación de Proteína/metabolismo , Ricina/química , Ricina/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo , Sistema Libre de Células , Técnicas In Vitro , Ratones , Microsomas/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Biosíntesis de Proteínas , Señales de Clasificación de Proteína/genética , Proteolípidos/metabolismo , Conejos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ricina/genética , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
12.
J Biol Chem ; 270(34): 19873-8, 1995 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-7650000

RESUMEN

Secretory proteins are synthesized with a signal sequence that is usually cleaved from the nascent protein during the translocation of the polypeptide chain into the lumen of the endoplasmic reticulum. To determine the fate of a cleaved signal sequence, we used a synchronized in vitro translocation system. We found that the cleaved signal peptide of preprolactin is further processed close to its COOH terminus. The resulting fragment accumulated in the microsomal fraction and with time was released into the cytosol. Signal sequence cleavage and processing could be reproduced with reconstituted vesicles containing Sec61, signal recognition particle receptor, and signal peptidase complex.


Asunto(s)
Microsomas/metabolismo , Señales de Clasificación de Proteína/metabolismo , Secuencia de Aminoácidos , Animales , Citosol/metabolismo , Perros , Técnicas In Vitro , Cinética , Datos de Secuencia Molecular , Mutación , Páncreas/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Prolactina/genética , Prolactina/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/genética
13.
Cell ; 82(2): 261-70, 1995 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-7628015

RESUMEN

We have analyzed early phases of the cotranslational transport of the secretory protein preprolactin through the mammalian endoplasmic reticulum (ER) membrane. Following recognition of the signal sequence of the nascent polypeptide chain in the cytosol by the SRP, the chain is transferred into the membrane, where a second signal sequence recognition step takes place for which the presence in the lipid bilayer of the Sec61p complex is essential and sufficient. This step leads to a tight junction between the ribosomenascent chain complex and the Sec61p complex, and to the productive insertion of the nascent chain into the translocation site. These results show that a translocation substrate is subjected to two recognition events before being allowed to cross the ER membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Prolactina/biosíntesis , Prolactina/metabolismo , Biosíntesis de Proteínas , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Membrana Celular/metabolismo , Citosol/metabolismo , Membrana Dobles de Lípidos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteolípidos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC , Transcripción Genética
14.
FEBS Lett ; 362(2): 126-30, 1995 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-7720858

RESUMEN

Cross-linking studies have implicated Sec61 alpha as the principal component adjacent to newly synthesised membrane proteins during insertion into the endoplasmic reticulum. Using proteoliposomes which have been reconstituted from purified components of the endoplasmic reticulum [Görlich, D and Rapoport, T.A., Cell 75 (1993) 615-630] we have found that the Sec61 complex, consisting of three subunits, is essential for the insertion of single-spanning membrane proteins. This is true for signal-anchor proteins of both orientations, and for proteins with a cleavable signal sequence. These results support the view that Sec61 alpha is a major component of the ER translocation site and promotes both the insertion of membrane proteins and the translocation of secretory proteins.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Glicoforinas/metabolismo , Glicosilación , Hemaglutininas Virales/metabolismo , Liposomas/metabolismo , Proteínas de la Membrana/química , Señales de Clasificación de Proteína/química , Señales de Clasificación de Proteína/metabolismo , Canales de Translocación SEC
15.
FEBS Lett ; 346(1): 73-7, 1994 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-8206162

RESUMEN

Protein transport across the endoplasmic reticulum membrane in eukaryotes and across the cytoplasmic membrane in bacteria have turned out to be highly related. The core component of the translocation apparatus is the Sec61/SecYp complex; at least two of its subunits are conserved in evolution. The Sec61/SecYp complex is involved in both co- and post-translational transport pathways. The two modes require probably distinct additional components.


Asunto(s)
Proteínas de Escherichia coli , Proteínas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Procesamiento Proteico-Postraduccional , Canales de Translocación SEC , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
16.
FEBS Lett ; 329(3): 268-72, 1993 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-8396042

RESUMEN

Protein translocation across the endoplasmic reticulum (ER) membrane of yeast can be inhibited by agents believed to specifically affect the transport of ATP through the membrane (Mayinger, P. and Meyer, D.I. (1993) EMBO J. 12, 659-666), suggesting the involvement of a translocation component in the lumen of the ER that binds ATP. We demonstrate that one of the inhibitors, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), also affects the translocation of proteins into mammalian microsomes. Translocation is blocked at the point of transfer of the nascent chain from the signal recognition particle (SRP) into the ER-membrane. We also confirm that photoaffinity-labelling of microsomes with 8-azido-ATP inhibits the same early step of protein translocation. Since this step is reported to not require ATP, these results raise the possibility that, in both cases, factor(s) other than ATP-binding components of the translocation machinery are perturbed.


Asunto(s)
Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/análogos & derivados , Retículo Endoplásmico/efectos de los fármacos , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/farmacología , Adenosina Trifosfato/análogos & derivados , Animales , Azidas , Transporte Biológico/efectos de los fármacos , Perros , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Microsomas/metabolismo , Precursores de Proteínas/metabolismo , Conejos , Ribonucleoproteínas/metabolismo , Partícula de Reconocimiento de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA