Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834031

RESUMEN

As vaccination efforts against SARS-CoV-2 progress in many countries, there is still an urgent need for efficient antiviral treatment strategies for those with severer disease courses, and lately, considerable efforts have been undertaken to repurpose existing drugs as antivirals. The local anaesthetic procaine has been investigated for antiviral properties against several viruses over the past decades. Here, we present data on the inhibitory effect of the procaine prodrugs ProcCluster® and procaine hydrochloride on SARS-CoV-2 infection in vitro. Both procaine prodrugs limit SARS-CoV-2 progeny virus titres as well as reduce interferon and cytokine responses in a proportional manner to the virus load. The addition of procaine during the early stages of the SARS-CoV-2 replication cycle in a cell culture first limits the production of subgenomic RNA transcripts, and later affects the replication of the viral genomic RNA. Interestingly, procaine additionally exerts a prominent effect on SARS-CoV-2 progeny virus release when added late during the replication cycle, when viral RNA production and protein production are already largely completed.


Asunto(s)
COVID-19 , Profármacos , Animales , Chlorocebus aethiops , SARS-CoV-2 , Antivirales/farmacología , Anestésicos Locales/farmacología , Profármacos/farmacología , Células Vero , Procaína/farmacología , Replicación Viral
3.
EClinicalMedicine ; 56: 101809, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36636296

RESUMEN

Background: Psilocybin has been suggested as a novel, rapid-acting treatment for depression. Two consecutive doses have been shown to markedly decrease symptom severity in an open-label setting or when compared to a waiting list group. To date, to our knowledge, no other trial compared a single, moderate dose of psilocybin to a placebo condition. Methods: In this double-blind, randomised clinical trial, 52 participants diagnosed with major depressive disorder and no unstable somatic conditions were allocated to receive either a single, moderate dose (0.215 mg/kg body weight) of psilocybin or placebo in conjunction with psychological support. MADRS and BDI scores were assessed to estimate depression severity, while changes from baseline to 14 days after the intervention were defined as primary endpoints. The trial took place between April 11th, 2019 and October 12th, 2021 at the psychiatric university hospital in Zürich, Switzerland and was registered with clinicaltrials.gov (NCT03715127). Findings: The psilocybin condition showed an absolute decrease in symptom severity of -13.0 points compared to baseline and were significantly larger than those in the placebo condition (95% CI -15.0 to -1.3; Cohens' d = 0.97; P = 0.0011; MADRS) and -13.2 points (95% CI; -13.4 to -1.3; Cohens' d = 0.67; P = 0.019; BDI) 14 days after the intervention. 14/26 (54%) participants met the MADRS remission criteria in the psilocybin condition. Interpretation: These results suggest that a single, moderate dose of psilocybin significantly reduces depressive symptoms compared to a placebo condition for at least two weeks. No serious adverse events were recorded. Larger, multi-centric trials with longer follow-up periods are needed to inform further optimisation of this novel treatment paradigm. Funding: The study was funded by the Swiss National Science Foundation, Crowdfunding, the Swiss Neuromatrix Foundation, and the Heffter Research Institute.

4.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362151

RESUMEN

BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.


Asunto(s)
Neoplasias de la Mama , Genes BRCA1 , Humanos , Femenino , Línea Celular Tumoral , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Recombinación Homóloga , Reparación del ADN/genética , Replicación del ADN , Daño del ADN , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico
5.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35805887

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Antivirales/uso terapéutico , Aspirina/farmacología , Aspirina/uso terapéutico , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Lisina
6.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637603

RESUMEN

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

7.
Hum Mol Genet ; 28(24): 4148-4160, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31630195

RESUMEN

Whilst heterozygous germline mutations in the ABRAXAS1 gene have been associated with a hereditary predisposition to breast cancer, their effect on promoting tumourigenesis at the cellular level has not been explored. Here, we demonstrate in patient-derived cells that the Finnish ABRAXAS1 founder mutation (c.1082G > A, Arg361Gln), even in the heterozygous state leads to decreased BRCA1 protein levels as well as reduced nuclear localization and foci formation of BRCA1 and CtIP. This causes disturbances in basal BRCA1-A complex localization, which is reflected by a restraint in error-prone DNA double-strand break repair pathway usage, attenuated DNA damage response and deregulated G2-M checkpoint control. The current study clearly demonstrates how the Finnish ABRAXAS1 founder mutation acts in a dominant-negative manner on BRCA1 to promote genome destabilization in heterozygous carrier cells.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Proteínas Portadoras/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación de Línea Germinal , Adulto , Puntos de Control del Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Genes BRCA1 , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Proteínas Supresoras de Tumor/genética
8.
Neuroimage ; 171: 1-5, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29292133

RESUMEN

INTRODUCTION: The serotonergic system modulates affect and is a target in the treatment of mood disorders. 5-HT1A autoreceptors in the raphe control serotonin release by means of negative feedback inhibition. Hence, 5-HT1A autoreceptor function should influence the serotonergic regulation of emotional reactivity in limbic regions. Previous findings suggest an inverse relationship between 5-HT1A autoreceptor binding and amygdala reactivity to facial emotional expressions. The aim of the current multimodal neuroimaging study was to replicate the previous finding in a larger cohort. METHODS: 31 healthy participants underwent fMRI as well as PET using the radioligand [carbonyl-11C]WAY-100635 to quantify 5-HT1A autoreceptor binding in the dorsal raphe. The binding potential (BPND) was quantified using the multilinear reference tissue model (MRTM2) and cerebellar white matter as reference tissue. Functional MRI was done at 3T using a well-established facial emotion discrimination task (EDT). Here, participants had to match the emotional valence of facial expressions, while in a control condition they had to match geometric shapes. Effects of 5-HT1A autoreceptor binding on amygdala reactivity were investigated using linear regression analysis with SPM8. RESULTS: Regression analysis between 5-HT1A autoreceptor binding and mean amygdala reactivity revealed no statistically significant associations. Investigating amygdala reactivity in a voxel-wise approach revealed a positive association in the right amygdala (peak-T = 3.64, p < .05 FWE corrected for the amygdala volume) which was however conditional on the omission of age and sex as covariates in the model. CONCLUSION: Despite highly significant amygdala reactivity to facial emotional expressions, we were unable to replicate the inverse relationship between 5-HT1A autoreceptor binding in the DRN and amygdala reactivity. Our results oppose previous multimodal imaging studies but seem to be in line with recent animal research. Deviation in results may be explained by methodological differences between our and previous multimodal studies.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/metabolismo , Neuroimagen/métodos , Receptor de Serotonina 5-HT1A/biosíntesis , Adulto , Autorreceptores/biosíntesis , Emociones/fisiología , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones
9.
Int J Neuropsychopharmacol ; 21(2): 145-153, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29045739

RESUMEN

Background: Comprehensive description of ketamine's molecular binding profile becomes increasingly pressing as use in real-life patient cohorts widens. Animal studies attribute a significant role in the substance's antidepressant effects to the serotonergic system. The serotonin transporter is a highly relevant target in this context, because it is central to depressive pathophysiology and treatment. This is, to our knowledge, the first study investigating ketamine's serotonin transporter binding in vivo in humans. Methods: Twelve healthy subjects were assessed twice using [11C]DASB positron emission tomography. A total of 0.50 mg/kg bodyweight ketamine was administered once i.v. prior to the second positron emission tomography scan. Ketamine plasma levels were determined during positron emission tomography. Serotonin transporter nondisplaceable binding potential was computed using a reference region model, and occupancy was calculated for 4 serotonin transporter-rich regions (caudate, putamen, thalamus, midbrain) and a whole-brain region of interest. Results: After administration of the routine antidepressant dose, ketamine showed <10% occupancy of the serotonin transporter, which is within the test-retest variability of [11C]DASB. A positive correlation between ketamine plasma levels and occupancy was shown. Conclusions: Measurable occupancy of the serotonin transporter was not detectable after administration of an antidepressant dose of ketamine. This might suggest that ketamine binding of the serotonin transporter is unlikely to be a primary antidepressant mechanism at routine antidepressant doses, as substances that facilitate antidepressant effects via serotonin transporter binding (e.g., selective serotonin reuptake inhibitors) show 70% to 80% occupancy. Administration of high-dose ketamine is widening. Based on the positive relationship we find between ketamine plasma levels and occupancy, there is a need for investigation of ketamine's serotonin transporter binding at higher doses.


Asunto(s)
Compuestos de Anilina , Antidepresivos/farmacocinética , Ketamina/farmacocinética , Mesencéfalo/efectos de los fármacos , Neostriado/efectos de los fármacos , Tomografía de Emisión de Positrones/métodos , Serotoninérgicos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Sulfuros , Tálamo/efectos de los fármacos , Adulto , Antidepresivos/administración & dosificación , Humanos , Ketamina/administración & dosificación , Masculino , Mesencéfalo/diagnóstico por imagen , Neostriado/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adulto Joven
10.
J Biomed Opt ; 14(5): 050501, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19895097

RESUMEN

We demonstrate the capability of full-range complex (FRC) spectral domain optical coherence tomography (SD-OCT) to image the anterior eye segment from the cornea to the posterior surface of the lens. With an adapted spectrometer design, we developed a SD-OCT system with an extended normal (single half-space) depth range of 7 mm (in air). This OCT-intrinsic depth range was doubled with a FRC technique. We demonstrate the performance of our OCT system by imaging the whole anterior segment of a healthy human eye in vivo.


Asunto(s)
Segmento Anterior del Ojo/citología , Aumento de la Imagen/instrumentación , Imagenología Tridimensional/instrumentación , Oftalmoscopios , Tomografía de Coherencia Óptica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...