Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(3): 1584-1591, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450591

RESUMEN

Chemoresistive gas sensors made from SnO2, ZnO, WO3, and In2O3 have been prepared by flame spray pyrolysis. The sensors' response to CO and NO2 in darkness and under illumination at different wavelengths, using commercially available LEDs, was investigated. Operation at room temperature turned out to be impractical due to the condensation of water inside the porous sensing layers and the irreversible changes it caused. Accordingly, for sensors operated at 70 °C, a characterization procedure was developed and proven to deliver consistent data. The resulting data set was so complex that usual univariate data analysis was intricate and, consequently, was investigated by correlation and principal component analysis. The results show that light of different wavelengths affects not only the resistance of each material, both under exposure to the target gases in humidity and in its absence, but also the sensor response to humidity and the target gases. It was found that each of the materials behaves differently under light exposure, and it was possible to identify conditions that need further investigations.


Asunto(s)
Gases , Análisis Multivariante , Humedad , Porosidad , Análisis de Componente Principal
2.
ACS Sens ; 9(1): 149-156, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38178551

RESUMEN

Investigating the sensing mechanisms in semiconducting metal oxide (SMOx) gas sensors is essential for optimizing their performance across a wide range of potential applications. Despite significant progress in the field, there are still many gaps in comprehending the phenomenological processes occurring in one-dimensional (1D) nanostructures. This article presents the first insights into the conduction mechanism of chemoresistive gas sensors based on single-crystalline Sn3O4 nanobelts using the operando Kelvin Probe technique. From this approach, direct current (DC) electrical resistance and work function changes were simultaneously measured in different working conditions, and a correlation between the conductance and the surface band bending was established. Appropriate modeling was proposed, and the results revealed that the conduction mechanism in the single-crystalline one-dimensional nanostructures closely aligns with the behavior observed in single-crystalline epitaxial layers rather than in polycrystalline grains. Based on this assumption, relevant parameters were further estimated, including Debye length, concentration of free charge carriers, effective density of states in the conduction band, and position of the Fermi level. Overall, this study provides an effective contribution to understanding the role of surface chemistry in the transduction of the electrical signal generated from gas adsorption in single-crystalline one-dimensional nanostructures.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Óxidos/química , Electricidad
3.
J Phys Chem Lett ; 13(16): 3631-3635, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35435691

RESUMEN

Light-excitation of semiconducting metal-oxide (SMOX)-based gas sensors is a promising means to lower their operation temperature, thereby reducing power consumption, which would allow for their broader application. Despite increased research interest in light-excited gas sensors, progress has been slow because of a lack of mechanistic understanding. Notably, significant differences between light-excitation and, the better understood, thermal-excitation mechanisms have been identified. Insights from operando spectroscopic studies have been key to understanding the surface chemistry that determines the performance of thermally activated SMOX, but they have not yet been performed on illuminated sensors. Here, for the first time, we demonstrate that it is possible to perform operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy measurements on sensors under illumination. We demonstrate the benefits of the approach and show that under light illumination the splitting of water on the WO3 surface is responsible for the increased resistance of the sensor during exposure to high humidity.

4.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960553

RESUMEN

Beginning with LaFeO3, a prominent perovskite-structured material used in the field of gas sensing, various perovskite-structured materials were prepared using sol-gel technique. The composition was systematically modified by replacing La with Sm and Gd, or Fe with Cr, Mn, Co, and Ni. The materials synthesized are comparable in grain size and morphology. DC resistance measurements performed on gas sensors reveal Fe-based compounds solely demonstrated effective sensing performance of acetylene and ethylene. Operando diffuse reflectance infrared Fourier transform spectroscopy shows the sensing mechanism is dependent on semiconductor properties of such materials, and that surface reactivity plays a key role in the sensing response. The replacement of A-site with various lanthanoid elements conserves surface reactivity of AFeO3, while changes at the B-site of LaBO3 lead to alterations in sensor surface chemistry.

5.
ACS Sens ; 5(10): 3207-3216, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32914615

RESUMEN

This work presents an operando infrared spectroscopic study of the temperature-dependent water adsorption on pristine SnO2 surfaces and discusses the possible implications on the oxygen ionosorption and gas-sensing mechanism. The impact of water on the sensor resistance, CO-sensing performance, and CO conversion was studied, and the obtained phenomenological results provide the basis for discussing the operando spectroscopic investigation findings. The provided information allows identification of three different water adsorption regimes ranging from physisorption and dominant associative adsorption to mainly dissociative water adsorption. In these regions, water has different impacts on the surface composition, sensor resistance, and gas-sensing performance.


Asunto(s)
Vapor , Compuestos de Estaño , Adsorción , Temperatura
6.
Nanomaterials (Basel) ; 8(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388804

RESUMEN

In order to increase their stability and tune-sensing characteristics, metal oxides are often surface-loaded with noble metals. Although a great deal of empirical work shows that surface-loading with noble metals drastically changes sensing characteristics, little information exists on the mechanism. Here, a systematic study of sensors based on rhodium-loaded WO3, SnO2, and In2O3-examined using X-ray diffraction, high-resolution scanning transmission electron microscopy, direct current (DC) resistance measurements, operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and operando X-ray absorption spectroscopy-is presented. Under normal sensing conditions, the rhodium clusters were oxidized. Significant evidence is provided that, in this case, the sensing is dominated by a Fermi-level pinning mechanism, i.e., the reaction with the target gas takes place on the noble-metal cluster, changing its oxidation state. As a result, the heterojunction between the oxidized rhodium clusters and the base metal oxide was altered and a change in the resistance was detected. Through measurements done in low-oxygen background, it was possible to induce a mechanism switch by reducing the clusters to their metallic state. At this point, there was a significant drop in the overall resistance, and the reaction between the target gas and the base material was again visible. For decades, noble metal loading was used to change the characteristics of metal-oxide-based sensors. The study presented here is an attempt to clarify the mechanism responsible for the change. Generalities are shown between the sensing mechanisms of different supporting materials loaded with rhodium, and sample-specific aspects that must be considered are identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...