Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Leukoc Biol ; 108(4): 1279-1291, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32620042

RESUMEN

Guanylate binding proteins (GBPs) are important effector molecules of autonomous response induced by proinflammatory stimuli, mainly IFNs. The murine GBPs clustered in chromosome 3 (GBPchr3) contains the majority of human homologous GBPs. Despite intense efforts, mycobacterial-promoted diseases are still a major public health problem. However, the combined importance of GBPchr3 during mycobacterial infection has been overlooked. This study addresses the influence of the GBPchr3 in host immunity against mycobacterial infection to elucidate the relationship between cell-intrinsic immunity and triggering of an efficient anti-mycobacterial immune response. Here we show that all GBPchr3 are up-regulated in lungs of mice during Mycobacterium bovis BCG infection, resembling tissue expression of IFN-γ. Mice deficient in GBPchr3 (GBPchr3-/- ) were more susceptible to infection, displaying diminished expression of autophagy-related genes (LC3B, ULK1, and ATG5) in lungs. Additionally, there was reduced proinflammatory cytokine production complementary to diminished numbers of myeloid cells in spleens of GBPchr3-/- . Higher bacterial burden in GBPchr3-/- animals correlated with increased number of tissue granulomas. Furthermore, absence of GBPchr3 hampered activation and production of TNF-α and IL-12 by dendritic cells. Concerning macrophages, lack of GBPs impaired their antimicrobial function, diminishing autophagy induction and intracellular killing efficiency. In contrast, single GBP2 deficiency did not contribute to in vivo bacterial control. In conclusion, this study shows that GBPchr3 are important not only to stimulate cell-intrinsic immunity but also for inducing an efficient immune response to control mycobacterial infection in vivo.


Asunto(s)
Cromosomas de los Mamíferos/inmunología , Proteínas de Unión al GTP/inmunología , Mycobacterium bovis/inmunología , Tuberculosis/inmunología , Animales , Cromosomas de los Mamíferos/genética , Células Dendríticas/inmunología , Células Dendríticas/patología , Proteínas de Unión al GTP/genética , Interleucina-12/genética , Interleucina-12/inmunología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Tuberculosis/genética , Tuberculosis/patología , Tuberculosis/veterinaria , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
2.
Sci Rep ; 7(1): 2109, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522873

RESUMEN

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0-3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-ß as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.


Asunto(s)
Vacuna BCG/inmunología , Endotoxinas/inmunología , Tuberculosis/inmunología , Vacunas Sintéticas/inmunología , Adyuvantes Inmunológicos/genética , Animales , Vacuna BCG/genética , Células Cultivadas , Endotoxinas/genética , Pulmón/inmunología , Ratones , Mycobacterium tuberculosis/inmunología , Bazo/inmunología , Vacunas Sintéticas/genética
3.
Front Microbiol ; 8: 623, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28446902

RESUMEN

Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a vaccine used to prevent tuberculosis (TB). Due to the poor protection conferred by BCG in adults, new, more effective formulations have been developed. A recombinant BCG vaccine expressing the CMX fusion protein Ag85c_MPT51_HspX (rBCG-CMX) induced Th1 and Th17 responses and provided better protection than BCG. It has been shown that Mycobacterium smegmatis expressing CMX also induces better protection than BCG and is a strong macrophage activator. The aim of the present study was to evaluate macrophage activation by the recombinant CMX fusion protein and by rBCG-CMX and to evaluate their ability to generate vaccine-specific immune responses. The results demonstrate that rCMX protein expressed by BCG (rBCG-CMX) activates pulmonary macrophages; increases the expression of activation molecules, cytokines, and MHC-II. The interaction with rCMX activates the transcription factor NF-κB and induces the production of the cytokines TGF-ß, TNF-α, and IL-6. The in vitro stimulation of bone marrow-derived macrophages (BMMs) from TLR-4 or TLR-2 KO mice showed that in the absence of TLR-4, IL-6 was not produced. rBCG-CMX was unable to induce CMX-specific Th1 and Th17 cells in TLR-4 and TLR-2 KO mice, suggesting that these receptors participate in their induction. We concluded that both the rBCG-CMX vaccine and the rCMX protein can activate macrophages and favor the specific immune response necessary for this vaccine.

4.
Front Microbiol ; 8: 504, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396657

RESUMEN

Mycobacterium tuberculosis is one of the most prevalent human pathogens causing millions of deaths in the last years. Moreover, tuberculosis (TB) treatment has become increasingly challenging owing to the emergence of multidrug resistant M. tuberculosis strains. Thus, there is an immediate need for the development of new anti-TB drugs. Proteases appear to be a promising approach and may lead to shortened and effective treatments for drug-resistant TB. Although the M. tuberculosis genome predicts more than 100 genes encoding proteases, only a few of them have been studied. Aminopeptidases constitute a set of proteases that selectively remove amino acids from the N-terminus of proteins and peptides and may act as virulence factors, essential for survival and maintenance of many microbial pathogens. Here, we characterized a leucine aminopeptidase of M. tuberculosis (MtLAP) as a cytosolic oligomeric metallo-aminopeptidase. Molecular and enzymatic properties lead us to classify MtLAP as a typical member of the peptidase family M17. Furthermore, the aminopeptidase inhibitor bestatin strongly inhibited MtLAP activity, in vitro M. tuberculosis growth and macrophage infection. In murine model of TB, bestatin treatment reduced bacterial burden and lesion in the lungs of infected mice. Thus, our data suggest that MtLAP participates in important metabolic pathways of M. tuberculosis necessary for its survival and virulence and consequently may be a promising target for new anti-TB drugs.

5.
Front Microbiol ; 8: 273, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275372

RESUMEN

Multi-drug resistant microorganisms have been a growing concern during the last decades due to their contribution in mortality rates worldwide. Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that display potent microbicidal activity against a wide range of microorganisms. AMPs generally have a rapid mode of action that reduces the risk of resistance developing among pathogens. In this study, an AMP derived from scorpion venom, NDBP-5.5, was evaluated against Mycobacterium abscessus subsp. massiliense, a rapidly growing and emerging pathogen associated with healthcare infections. The minimal bactericidal concentration of NDBP-5.5, AMP quantity necessary to stop bacteria visible growth, against M. abscessus subsp. massiliense was 200 µM, a concentration that did not induce hemolysis of human red blood cells. The therapeutic index was 3.05 indicating a drug with low toxicity and therefore good clinical potential. Treatment of infected macrophages with NDBP-5.5 or clarithromycin presented similar results, reducing the bacterial load. M. abscessus subsp. massiliense-infected animals showed a decrease in the bacterial load of up to 70% when treated with NDBP-5.5. These results revealed the effective microbicidal activity of NDBP-5.5 against Mycobacterium, indicating its potential as an antimycobacterial agent.

6.
Int J Antimicrob Agents ; 49(2): 167-175, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28108242

RESUMEN

Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of micro-organisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 µM in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 µM). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 µM and 2.90 µM, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 µM and 15.3 µM, respectively, for C. albicans, and 11 µM and 22.70 µM, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Péptidos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Venenos de Avispas/farmacología , Avispas/química , Administración Tópica , Animales , Antiinfecciosos/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino , Voluntarios Sanos , Humanos , Péptidos y Proteínas de Señalización Intercelular , Macrófagos Peritoneales/microbiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Péptidos/aislamiento & purificación , Resultado del Tratamiento , Venenos de Avispas/aislamiento & purificación
7.
Scientific Reports ; 7(1): 2109-2017. graf, ilus
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1067909

RESUMEN

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0–3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-β as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.


Asunto(s)
Vacuna BCG , Vacunas contra la Tuberculosis
8.
Int. J. Antimicrob. Agents ; 49(2): 167-175, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15472

RESUMEN

Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of microorganisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 mu M in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 mu M). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 mu M and 2.90 mu M, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 mu M and 15.3 mu M, respectively, for C. albicans, and 11 mu M and 22.70 mu M, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.

9.
Sci. Rep. ; 7: 2109, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15200

RESUMEN

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63(lo)) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0-3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63(lo) also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63(lo) produced an increase in TGF-beta as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63(lo) also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63(lo) strain can be the basis of an improved vaccine against tuberculosis.

10.
Front Microbiol ; 7: 898, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375607

RESUMEN

Mycobacterium tuberculosis causes tuberculosis (TB), a disease that killed more than 1.5 million people worldwide in 2014, and the Bacillus Calmette Guérin (BCG) vaccine is the only currently available vaccine against TB. However, it does not protect adults. Th1 and Th17 cells are crucial for TB control, as well as the neutrophils that are directly involved in DC trafficking to the draining lymph nodes and the activation of T lymphocytes during infection. Although several studies have shown the importance of neutrophils during M. tuberculosis infection, none have shown its role in the development of a specific response to a vaccine. The vaccine mc(2)-CMX was shown to protect mice against M. tuberculosis challenge, mainly due to specific Th1 and Th17 cells. This study evaluated the importance of neutrophils in the generation of the Th1- and Th17-specific responses elicited by this vaccine. The vaccine injection induced a neutrophil rich lesion with a necrotic central area. The IL-17 KO mice did not generate vaccine-specific Th1 cells. The vaccinated IL-22 KO mice exhibited Th1- and Th17-specific responses. Neutrophil depletion during vaccination abrogated the induction of Th1-specific responses and prohibited the bacterial load reduction observed in the vaccinated animals. The results show, for the first time, the role of neutrophils in the generation of specific Th1 and Th17 cells in response to a tuberculosis vaccine.

11.
Pesqui. vet. bras ; 28(8): 358-366, ago. 2008. ilus, tab
Artículo en Portugués | LILACS | ID: lil-492855

RESUMEN

A Copaifera langsdorffii é uma leguminosa nativa do Brasil, da qual pode ser extraído um óleo, popularmente conhecido como óleo de copaíba. Este óleo é amplamente utilizado para tratamento de feridas cutâneas por ser reconhecido como antiinflamatório e cicatrizante. Apesar disso, poucas comprovações científicas do verdadeiro efeito terapêutico desta planta medicinal foram produzidas. O objetivo desse trabalho foi avaliar o efeito do tratamento tópico com C. langsdorffii no processo de reparo quando um corpo estranho é o indutor da inflamação. Para isso, 60 camundongos da linhagem BALB/c foram submetidos à incisão cirúrgica linear de 1cm no dorso para realizar o implante de uma lamínula de vidro com 12mm de diâmetro no tecido subcutâneo. Quatro tratamentos para a ferida foram estabelecidos: controle (C) tratado com solução salina estéril, controle veículo (CV) tratado com óleo mineral estéril, tratamento 1 (T1) tratado com diluição (v:v) de óleo mineral estéril e óleo de C. langsdorffii, tratamento 2 (T2) tratado com óleo de C. langsdorffii puro. As avaliações foram realizadas em períodos de tempo pré-determinados (1, 3, 5, 7 e 14 dias). Era possível perceber características da fase proliferativa como a reepitelização, a presença de fibroblastos e a neovascularização, porém os grupos tratados com o óleo (T1 e T2) não apresentavam reepitelização aos três dias. Esses grupos aos 5 e 7 dias apresentavam no exame macroscópico maior intensidade de edema, hiperemia e permanência de crostas. Na microscopia, a reepitelização ainda não estava completa e a crosta era serocelular. Nos grupos C e CV, apesar de discreta, era predominante a presença de mononucleares, enquanto nos grupos T1 e T2 o infiltrado inflamatório era misto e com maior intensidade que nos outros grupos. Quatorze dias depois da incisão cirúrgica, os aspectos macroscópicos dos grupos C e CV eram semelhantes e os grupos T1 e T2, apesar de a ferida estar completamente fechada e sem...


Copaifera langsdorffii is a Brazilian native leguminosae that produce resin-oil, popularly known as copaíba oil. This oil is used for the treatment of skin wound due to its recognized antiinflammatory and wound healing effects. Despite, its popular use, there are few published data about the therapeutic effect of this medicinal plant. The aim of the study was to evaluate the topic treatment effect of the Copaíba oil on the process of skin repair inflammation induced by a foreign body subcutanously implanted. Sixty BALB/c mice were submitted to a 1cm linear incision and a 12mm circle coverslip was subcutaneously implanted. Four treatments groups were established: control, sterile saline (C); vehicle control, sterile mineral oil, (VC); treatment 1 (T1), mineral oil plus copaiba oil (V/V), and treatment 2 (T2) copaiba oil. The evaluations were performed at pre-determined time points (1, 3, 5, 7 and 14 days). It was possible to find fibroblasts, epithelial cells proliferation, re-epithelization and newly formed blood vessels in all groups, however, all oil treated groups (T1 and T2) did not present re-epithelization at three days post surgical incision. On days 5 and 7, a higher intensity of edema and hyperemia on the groups T1 and T2 was observed, besides that, the T1 and T2 groups presented a serous cellular scab on the wounds that was absent on the C and VC groups. The inflammatory reactions among the groups C and VC showed more mononuclear cells than the T1 and T2 groups that presented a mixed cell patter composed from both mono and polymorphonuclear cells. Although the surgical wounds were re-epithelizaded, in the groups T1 and T2, they were covered by a serous cellular crust and the dermis tissue still presented an intense mononuclear cell inflammatory focus. Fourteen days after of the surgical incision, the gross aspects on groups C and VC were similar and on groups T1 and T2, despite wound to be completely closed and without...


Asunto(s)
Animales , Antiinflamatorios , Cicatrización de Heridas , Fabaceae/efectos adversos , Ratones , Aceites de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...