Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 8(4)2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830942

RESUMEN

For more than a century, diabetic patients have been considered immunosuppressed due to defects in phagocytosis and microbial killing. We confirmed that diabetic mice were hypersusceptible to bacteremia caused by Gram-negative bacteria (GNB), dying at inocula nonlethal to nondiabetic mice. Contrary to the pervasive paradigm that diabetes impedes phagocytic function, the bacterial burden was no greater in diabetic mice despite excess mortality. However, diabetic mice did exhibit dramatically increased levels of proinflammatory cytokines in response to GNB infections, and immunosuppressing these cytokines with dexamethasone restored their resistance to infection, both of which are consistent with excess inflammation. Furthermore, disruption of the receptor for advanced glycation end products (RAGE), which is stimulated by heightened levels of AGEs in diabetic hosts, protected diabetic but not nondiabetic mice from GNB infection. Thus, rather than immunosuppression, diabetes drives lethal hyperinflammation in response to GNB by signaling through RAGE. As such, interventions to improve the outcomes from GNB infections should seek to suppress the immune response in diabetic hosts.IMPORTANCE Physicians and scientists have subscribed to the dogma that diabetes predisposes the host to worse outcomes from infections because it suppresses the immune system. This understanding was based largely on ex vivo studies of blood from patients and animals with diabetes. However, we have found that the opposite is true and worse outcomes from infection are caused by overstimulation of the immune system in response to bacteria. This overreaction occurs by simultaneous ligation of two host receptors: TLR4 and RAGE. Both signal via a common downstream messenger, MyD88, triggering hyperinflammation. In summary, contrary to hundred-year-old postulations about immune suppression in diabetic hosts, we find that diabetes instead predisposes to more severe infections because of additional inflammatory output through dual activation of MyD88 by not only TLR4 but also RAGE. It is the activation of RAGE during GNB infections in those with diabetes that accounts for their heightened susceptibility to infection compared to nondiabetic hosts.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamación/inmunología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Carga Bacteriana , Citocinas/inmunología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Progresión de la Enfermedad , Infecciones por Bacterias Gramnegativas/complicaciones , Infecciones por Bacterias Gramnegativas/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Fagocitosis , Receptor para Productos Finales de Glicación Avanzada/deficiencia , Receptor para Productos Finales de Glicación Avanzada/genética , Transducción de Señal , Receptor Toll-Like 4/genética
2.
BMC Microbiol ; 15: 252, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26526621

RESUMEN

BACKGROUND: Microbiological assays require accurate and reproducible preparation of bacterial inocula. Inocula prepared on different days by different individuals can vary significantly from experiment to experiment. This variance is particularly problematic for Gram-negative bacterial infections, for which threshold effects can result in marked variations in host outcome with minor differences in inocula. RESULTS: We compared the accuracy of traditional methods versus using frozen stocks for preparing Acinetobacter baumannii inocula for infection in mice. Standard inoculum preparation resulted in substantial variability, both with respect to the actual inocula achieved compared to the targeted inocula, and with respect to the in vivo outcome resulting from similar inocula. Cryopreservation of the bacteria resulted in no significant decrement in growth of the bacteria. Furthermore, preparation of multiple infectious inocula from a frozen stock significantly improved the accuracy of the achieved inocula, and resulted in more reproducible in vivo outcomes from infection. Frozen stocks reduced inter-experiment variability associated with inoculum preparation, displayed no significant loss of growth capacity, and maintained virulence, increasing the reliability of infection. CONCLUSIONS: Frozen stocks require considerably less time to prepare and enhance reproducibility of in vivo experimental results when infecting with A. baumannii.


Asunto(s)
Infecciones por Acinetobacter/mortalidad , Acinetobacter baumannii/patogenicidad , Criopreservación/métodos , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/veterinaria , Acinetobacter baumannii/crecimiento & desarrollo , Animales , Ratones , Reproducibilidad de los Resultados , Factores de Tiempo , Virulencia
3.
J Infect Dis ; 211(8): 1296-305, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378635

RESUMEN

BACKGROUND: Acinetobacter baumannii is one of the most antibiotic-resistant pathogens. Defining mechanisms driving pathogenesis is critical to enable new therapeutic approaches. METHODS: We studied virulence differences across a diverse panel of A. baumannii clinical isolates during murine bacteremia to elucidate host-microbe interactions that drive outcome. RESULTS: We identified hypervirulent strains that were lethal at low intravenous inocula and achieved very high early, and persistent, blood bacterial densities. Virulent strains were nonlethal at low inocula but lethal at 2.5-fold higher inocula. Finally, relatively avirulent (hypovirulent) strains were nonlethal at 20-fold higher inocula and were efficiently cleared by early time points. In vivo virulence correlated with in vitro resistance to complement and macrophage uptake. Depletion of complement, macrophages, and neutrophils each independently increased bacterial density of the hypovirulent strain but insufficiently to change lethality. However, disruption of all 3 effector mechanisms enabled early bacterial densities similar to hypervirulent strains, rendering infection 100% fatal. CONCLUSIONS: The lethality of A. baumannii strains depends on distinct stages. Strains resistant to early innate effectors are able to establish very high early bacterial blood density, and subsequent sustained bacteremia leads to Toll-like receptor 4-mediated hyperinflammation and lethality. These results have important implications for translational efforts to develop therapies that modulate host-microbe interactions.


Asunto(s)
Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/inmunología , Bacteriemia/inmunología , Inmunidad Innata/inmunología , Interacciones Microbianas/inmunología , Infecciones por Acinetobacter/microbiología , Animales , Antibacterianos/inmunología , Bacteriemia/microbiología , Farmacorresistencia Bacteriana Múltiple/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C3H , Neutrófilos/inmunología , Neutrófilos/microbiología , Virulencia/inmunología , Factores de Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA