Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(2): e0246930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33592009

RESUMEN

Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11ß-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3ß and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.


Asunto(s)
Fatiga/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Transcortina/deficiencia , Animales , Corticosterona/sangre , Ratones , Fosforilación , Estrés Psicológico/sangre , Estrés Psicológico/metabolismo , Transcortina/metabolismo
2.
Mol Neurobiol ; 55(5): 4437-4452, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28664455

RESUMEN

The activation of c-Jun-N-terminal kinases (JNK) pathway has been largely associated with the pathogenesis and the neuronal death that occur in neurodegenerative diseases. Altogether, this justifies why JNKs have become a focus of screens for new therapeutic strategies. The aim of the present study was to identify the role of the different JNK isoforms (JNK1, JNK2, and JNK3) in apoptosis and inflammation after induction of brain damage. To address this aim, we induced excitotoxicity in wild-type and JNK knockout mice (jnk1 -/- , jnk2 -/- , and jnk3 -/- ) via an intraperitoneal injection of kainic acid, an agonist of glutamic-kainate-receptors, that induce status epilepticus.Each group of animals was divided into two treatments: a single intraperitoneal dose of saline solution, used as a control, and a single intraperitoneal dose (30 mg/kg) of kainic acid. Our results reported a significant decrease in neuronal degeneration in the hippocampus of jnk1 -/- and jnk3 -/- mice after kainic acid treatment, together with reduced or unaltered expression of several apoptotic genes compared to WT treated mice. In addition, both jnk1 -/- and jnk3 -/- mice exhibited a reduction in glial reactivity, as shown by the lower expression of inflammatory genes and a reduction of JNK phosphorylation. In addition, in jnk3 -/- mice, the c-Jun phosphorylation was also diminished.Collectively, these findings provide compelling evidence that the absence of JNK1 or JNK3 isoforms confers neuroprotection against neuronal damage induced by KA and evidence, for the first time, the implication of JNK1 in excitotoxicity. Accordingly, JNK1 and/or JNK3 are promising targets for the prevention of cell death and inflammation during epileptogenesis.


Asunto(s)
Epilepsia del Lóbulo Temporal/enzimología , Proteína Quinasa 10 Activada por Mitógenos/deficiencia , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Fármacos Neuroprotectores/metabolismo , Animales , Apoptosis/genética , Activación Enzimática , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Inflamación/patología , Isoenzimas/metabolismo , Ácido Kaínico , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fosforilación
3.
Nat Neurosci ; 20(11): 1602-1611, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28920933

RESUMEN

Noradrenaline modulates global brain states and diverse behaviors through what is traditionally believed to be a homogeneous cell population in the brainstem locus coeruleus (LC). However, it is unclear how LC coordinates disparate behavioral functions. We report a modular LC organization in rats, endowed with distinct neural projection patterns and coding properties for flexible specification of opposing behavioral learning states. LC projection mapping revealed functionally distinct cell modules with specific anatomical connectivity. An amygdala-projecting ensemble promoted aversive learning, while an independent medial prefrontal cortex-projecting ensemble extinguished aversive responses to enable flexible behavior. LC neurons displayed context-dependent inter-relationships, with moderate, discrete activation of distinct cell populations by fear or safety cues and robust, global recruitment of most cells by strong aversive stimuli. These results demonstrate a modular organization in LC in which combinatorial activation modes are coordinated with projection- and behavior-specific cell populations, enabling adaptive tuning of emotional responding and behavioral flexibility.


Asunto(s)
Tronco Encefálico/fisiología , Extinción Psicológica/fisiología , Aprendizaje/fisiología , Locus Coeruleus/fisiología , Norepinefrina/fisiología , Corteza Prefrontal/fisiología , Animales , Tronco Encefálico/química , Miedo/fisiología , Miedo/psicología , Locus Coeruleus/química , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/química , Vías Nerviosas/fisiología , Norepinefrina/análisis , Corteza Prefrontal/química , Distribución Aleatoria , Ratas , Ratas Long-Evans
4.
Neurogenesis (Austin) ; 4(1): e1304790, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28516108

RESUMEN

The molecular and cellular basis of adult neurogenesis has attracted considerable attention for fundamental and clinical applications because neural stem cells and newborn neurons may, one day, be harnessed to replace neurons and allow cognitive improvement in the diseased brain. In rodents, neural progenitors are located in the dentate gyrus and the sub/periventricular zone. In the dentate gyrus the generation of newborn neurons is associated with plasticity, including regulation of memory. The role of subventricular zone neural precursors that migrate to the olfactory bulb is less characterized. Identifying factors that impact neural stem cell proliferation, migration and differentiation is therefore sine qua non before we can harness their potential. Here, we expand upon our recent results showing that CAR, the coxsackievirus and adenovirus receptor, is among the developing list of key players when it comes to the complex process of integrating newborn neurons into existing circuits in the mature brain.

6.
J Neurosci ; 36(37): 9558-71, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629708

RESUMEN

UNLABELLED: Although we are beginning to understand the late stage of neurodegenerative diseases, the molecular defects associated with the initiation of impaired cognition are poorly characterized. Here, we demonstrate that in the adult brain, the coxsackievirus and adenovirus receptor (CAR) is located on neuron projections, at the presynapse in mature neurons, and on the soma of immature neurons in the hippocampus. In a proinflammatory or diseased environment, CAR is lost from immature neurons in the hippocampus. Strikingly, in hippocampi of patients at early stages of late-onset Alzheimer's disease (AD), CAR levels are significantly reduced. Similarly, in triple-transgenic AD mice, CAR levels in hippocampi are low and further reduced after systemic inflammation. Genetic deletion of CAR from the mouse brain triggers deficits in adult neurogenesis and synapse homeostasis that lead to impaired hippocampal plasticity and cognitive deficits. We propose that post-translational CAR loss of function contributes to cognitive defects in healthy and diseased-primed brains. SIGNIFICANCE STATEMENT: This study addressed the role of the coxsackievirus and adenovirus receptor (CAR), a single-pass cell adhesion molecule, in the adult brain. Our results demonstrate that CAR is expressed by mature neurons throughout the brain. In addition, we propose divergent roles for CAR in immature neurons, during neurogenesis, and at the mature synapse. Notably, CAR loss of function also affects hippocampal plasticity.


Asunto(s)
Enfermedad de Alzheimer/patología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/deficiencia , Hipocampo/patología , Neurogénesis/genética , Plasticidad Neuronal/genética , Sinapsis/metabolismo , Factores de Edad , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Animales , Células Cultivadas , Trastornos del Conocimiento/etiología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo
7.
Curr Opin Pharmacol ; 24: 86-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26298516

RESUMEN

Canine adenovirus type 2 (CAV-2) vectors are powerful tools for fundamental and applied neurobiology due to their negligible immunogenicity, preferential transduction of neurons, widespread distribution via axonal transport, and duration of expression in the mammalian brain. CAV-2 vectors are internalized in neurons by the selective use of coxsackievirus and adenovirus receptor (CAR), which is located at the presynapse in neurons. Neuronal internalization and axonal transport is mediated by CAR, which potentiates vector biodistribution. The above characteristics, together with the ∼30kb cloning capacity of helper-dependent (HD) CAV-2 vectors, optimized CAV-2 vector creation, production and purification, is expanding the therapeutic and fundamental options for CNS gene transfer.


Asunto(s)
Adenovirus Caninos/genética , Enfermedades Neurodegenerativas/terapia , Animales , Terapia Genética , Vectores Genéticos , Humanos , Neuronas/metabolismo
8.
Mol Neurobiol ; 52(1): 120-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25119776

RESUMEN

The Fas receptor (FasR)/Fas ligand (FasL) system plays a significant role in the process of neuronal loss in neurological disorders. Thus, in the present study, we used a real-time PCR array focused apoptosis (Mouse Apoptosis RT(2) PCR Array) to study the role of the Fas pathway in the apoptotic process that occurs in a kainic acid (KA) mice experimental model. In fact, significant changes in the transcriptional activity of a total of 23 genes were found in the hippocampus of wild-type C57BL/6 mice after 12 h of KA treatment compared to untreated mice. Among the up-regulated genes, we found key factors involved in the extrinsic apoptotic pathway, such as tnf, fas and fasL, and also in caspase genes (caspase -4, caspase-8 and caspase-3). To discern the importance of the FasR/FasL pathway, mice lacking the functional Fas death receptor (lpr) were also treated with KA. After 24 h of neurotoxin treatment, lpr mice exhibited a reduced number of apoptotic positive cells, determined by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method in different regions of the hippocampus, when compared to wild-type mice. In addition, treatment of lpr mice with KA did not produce significant changes in the transcriptional activity of genes related to apoptosis in the hippocampus, either in the fas and fas ligand genes or in caspase-4 and caspase-8 and the executioner caspase-3 genes, as occurred in wild-type C57BL/6 mice. Thus, these data provide direct evidence that Fas signalling plays a key role in the induction of apoptosis in the hippocampus following KA treatment, making the inhibition of the death receptor pathway a potentially suitable target for excitotoxicity neuroprotection in neurological conditions such as epilepsy.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico/toxicidad , Neuroprotección/efectos de los fármacos , Receptor fas/metabolismo , Animales , Apoptosis/genética , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Etiquetado Corte-Fin in Situ , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Modelos Biológicos , Degeneración Nerviosa/patología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neurotoxinas/toxicidad , Transcripción Genética/efectos de los fármacos , Receptor fas/deficiencia
9.
Artículo en Inglés | MEDLINE | ID: mdl-24977329

RESUMEN

Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3h), on 1day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (10-50µM) for 6 or 48h significantly increased basal Ca(2+), reduced basal Na(+) levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.


Asunto(s)
Convulsivantes/toxicidad , Alucinógenos/toxicidad , Ácido Kaínico/toxicidad , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Convulsiones/inducido químicamente , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/fisiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Relación Dosis-Respuesta a Droga , Gliosis/inducido químicamente , Gliosis/patología , Gliosis/fisiopatología , Alucinógenos/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Microglía/fisiología , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/fisiología , Distribución Aleatoria , Convulsiones/patología , Convulsiones/fisiopatología
10.
Psychopharmacology (Berl) ; 231(5): 863-74, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24158501

RESUMEN

OBJECTIVES: Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. METHODS AND RESULTS: Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. CONCLUSIONS: This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Memoria/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Animales , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Región CA1 Hipocampal/citología , Espinas Dendríticas/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , N-Metil-3,4-metilenodioxianfetamina/sangre , Ratas , Ratas Sprague-Dawley
11.
Neuropathol Appl Neurobiol ; 40(6): 747-58, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24033405

RESUMEN

AIMS: Dithiocarb (diethyldithiocarbamate, DEDTC) belongs to the group of dithiocarbamates and is the main metabolite of disulphiram, a drug of choice for the treatment of alcohol dependence. Its therapeutic potential relays on its ability to create an unpleasant aversive reaction following the ingestion of alcohol, and this effect is usually accompanied by neurobehavioural symptoms. Most of these can be attributed to the impaired metabolism of brain biogenic amines. METHODS: To gain new insights into the dithiocarbamates and their effects on neurotransmitter systems, an in vivo experimental model based on daily injections of DEDTC in adult mice for 7 days was established. To this end, the concentrations of the three major brain monoamines, dopamine (DA), noradrenaline (NA) and serotonin (5-HT) were measured in whole brain extracts with high-performance liquid chromatography (HPLC). The levels of D2 dopamine receptor (D2R) were evaluated by Western blot and by immunohistochemical techniques the cell pattern of tyrosine hydroxylase (TH), dopa beta hydroxylase (DBH) and choline acetyltransferase ChAT) were analysed. RESULTS: A significant reduction in DA and 5-HT levels was observed, whereas NA was not affected. Moreover, decreases in D2R levels, as well as in enzymes such as TH, DBH and ChAT, were found. CONCLUSIONS: Our data suggest that DEDTC provokes alterations in biogenic amines and in different substrates of neurotransmitter systems, which could explain some of the neurobehavioural effects observed in patients treated with disulphiram.


Asunto(s)
Monoaminas Biogénicas/análisis , Química Encefálica/efectos de los fármacos , Ditiocarba/farmacología , Animales , Encéfalo/enzimología , Colina O-Acetiltransferasa/metabolismo , Ditiocarba/administración & dosificación , Dopamina/análisis , Masculino , Ratones , Norepinefrina/análisis , Receptores de Dopamina D2/análisis , Serotonina/análisis , Tirosina 3-Monooxigenasa/metabolismo
12.
Pharmacol Res ; 70(1): 116-25, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23376356

RESUMEN

Accumulating evidence suggests that the PI3K/AKT pathway is a pro-survival signalling system in neurons. Therefore, the inhibition of this pathway may be implicated in the degeneration of neurons in Parkinson's disease (PD), Alzheimer's disease (AD), and other neurological disorders. Here we study the participation of the mitogen-activated protein kinase (MAPK) pathway on apoptosis induced by PI3K/AKT inhibition in cultured cerebellar granule cells (CGCs). LY294002, a specific PI3K/AKT inhibitor, selectively activated the p38 MAPK kinase pathway and enhanced c-Jun phosphorylation, but did not activate JNK. The pharmacological inhibitors SB203580 (p38 inhibitor) and SP600125 (a JNK inhibitor) protected primary cultures of rat CGCs from LY294002-induced apoptosis. Furthermore, both compounds decreased the phosphorylation of c-Jun and lowered mRNA levels of the pro-apoptotic gene dp5, a direct target of c-Jun. Taken together, our data demonstrate that PI3K/AKT inhibition induces neuronal apoptosis, a process that is mediated by the activation of p38 MAPK/c-Jun/dp5.


Asunto(s)
Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/enzimología , Cerebelo/patología , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Microscopía de Contraste de Fase , Morfolinas/farmacología , Neuronas/enzimología , Neuronas/patología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Mol Endocrinol ; 49(3): R149-56, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22967480

RESUMEN

Leptin (Lep), an adipose-derived hormone, exerts very important functions in the body mainly on energy storage and availability. The physiological effects of Lep controlling the body weight and suppressing appetite are mediated by the long form of Lep receptor in the hypothalamus. Lep receptor activates several downstream molecules involved in key pathways related to cell survival such as STAT3, PI3K, MAPK, AMPK, CDK5 and GSK3ß. Collectively, these pathways act in a coordinated manner and form a network that is fully involved in Lep physiological response. Although the major interest in Lep is related to its role in the regulation of energy balance, and since resistance to Lep affects is the primary risk factor for obesity, the interest on their effects on brain cognition and neuroprotection is increasing. Thus, Lep and Lep mimetic compounds now await and deserve systematic exploration as the orchestrator of protective responses in the nervous system. Moreover, Lep might promote the activation of a cognitive process that may retard or even partially reverse selected aspects of Alzheimer's disease or ageing memory loss.


Asunto(s)
Envejecimiento/metabolismo , Leptina/metabolismo , Animales , Cognición/fisiología , Humanos , Hipotálamo/metabolismo , Modelos Biológicos , Receptores de Leptina/metabolismo
14.
Expert Opin Drug Discov ; 7(3): 217-29, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22468953

RESUMEN

INTRODUCTION: The prevalence of age-related pathologies, such as cardiovascular disease, neurodegenerative disease and diabetes type II, has increased dramatically with the rising average age of populations. Antiaging molecules and appropriate animal models need to be developed to prevent and or delay alterations that occur during aging and are manifested as age-associated illnesses. AREAS COVERED: This review covers the main experimental models used in aging research, from invertebrates up to nonhuman primates. The authors discuss studies of the biochemical pathways involved in dietary restriction, which has been associated with life span extension. The authors also describe the implications of sirtuin 1, insulin growth factor, mTOR (the mammalian target of rapamycin) and AMPK activation, which are well-characterized antiaging pathways. All these pathways are highly conserved from invertebrates to nonhuman primates. Although some invertebrate models are used to study the antiaging properties of drugs, mice models and nonhuman primates are more suitable, as the study of changes in memory loss is critical. The review highlights the conservation of the aging pathways between species. EXPERT OPINION: Further studies on aging should focus on two ways: i) improving animal models, for example, the genetically heterogeneous mice and ii) drug research. It is almost impossible to evaluate clinically the efficacy of antiaging drugs. Moreover, caloric restriction currently constitutes the most effective antiaging pathway. Thus, the strategy is to study drugs for aging-associated diseases, such as diabetes, that also have antiaging effects.


Asunto(s)
Envejecimiento/efectos de los fármacos , Modelos Animales de Enfermedad , Diseño de Fármacos , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Descubrimiento de Drogas/métodos , Humanos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/fisiopatología , Ratones , Primates , Especificidad de la Especie
15.
Neurotox Res ; 22(3): 195-207, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21965004

RESUMEN

Currently, there is no effective treatment for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Thus, a major focus of neuroscience research is to examine the mechanisms involved in neuronal loss in order to identify potential drug targets. Recent results indicate that DNA damage and re-entry into the cell cycle may constitute a common pathway in apoptosis in neurological diseases. The role of the cell cycle in such disorders is supported by data on the brain of patients who showed an increase in cell-cycle protein expression. Indeed, studies performed in neuronal cell preparations indicate that oxidative stress could be the main mechanism responsible for cell cycle re-entry. DNA damage and repair after oxidative stress may activate the enzyme ataxia telangiectasia mutated, which is a cell-cycle regulator. Once the cell cycle is activated, the increase in the expression of transcription factor E2F-1 could induce neuronal apoptosis. Furthermore, the potential routes involved in E2F-1 induced apoptosis could be p53-dependent or p53-independent. Under this E2F-1 hypothesis of cell death, multiple mitochondria-dependent pathways may be activated, including caspase and caspase-independent signaling cascades. Finally, given that cyclin-dependent kinase inhibitory drugs have neuroprotective and anti-apoptotic effects in experimental models, their potential application for the treatment of neurological disorders should be taken into account.


Asunto(s)
Apoptosis/fisiología , Ciclo Celular/fisiología , Neuronas/fisiología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/patología , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Hippocampus ; 22(2): 128-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20928830

RESUMEN

Multiple factors are involved in the glutamate-induced excitotoxicity phenomenon, such as overload of ionotropic and metabotropic receptors, excess Ca(2+) influx, nitric oxide synthase activation, oxidative damage due to increase in free radicals, and release of endogenous polyamine, among others. In order to attempt a more integrated approach to address this issue, we established, by microarray analysis, the hippocampus gene expression profiles under glutamate-induced excitotoxicity conditions. Increased gene expression is mainly related to excitotoxicity (CaMKII, glypican 2, GFAP, NCX3, IL-2, and Gmeb2) or with cell damage response (dynactin and Ecel1). Several genes that augmented their expression are related to glutamatergic system modulation, in particular with NMDA receptor modulation and calcium homeostasis (IL-2, CaMKII, acrosin, Gmeb2, hAChE, Slc83a, and SP1 factor). Conversely, among genes that diminished their expression, we found the Syngap 1, which is downregulated by CaMKII, and the MHC II, which is downregulated by glutamate. Changes observed in gene expression induced by monosodium glutamate (MSG) neonatal treatment in the hippocampus are consistent with the activation of the mechanisms that modulate NMDA receptor function as well as with the implementation of plastic response to cell damage and intracellular calcium homeostasis. Regarding this aspect, we report here that NCX3/Slc8a3, a Na(+)/Ca(2+) membrane exchanger, is highly expressed in astrocytes, both in vitro and in vivo, in response to glutamate-induced excitotoxicity. Hence, the results of this analysis present a broad view of the expression profile elicited by MSG neonatal treatment, and lead us to suggest the possible molecular pathways of action and reaction involved under this experimental model of excitotoxicity.


Asunto(s)
Aminoácidos Excitadores/farmacología , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Neuroglía/metabolismo , Intercambiador de Sodio-Calcio/biosíntesis , Animales , Western Blotting , Ácido Glutámico/farmacología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Wistar
17.
Pharmacol Res ; 65(1): 66-73, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21875668

RESUMEN

In the present study, we evaluated the effects of roscovitine (Rosco) and flavopiridol (Flavo), both of which are classified as cyclin-dependent kinase (CDK) inhibitors, on apoptosis induced by the inhibition of PI3K/AKT pathway in cerebellar granule neurons (CGNs). Our results demonstrate that both CDK inhibitors prevented apoptosis induced by LY294002 (LY), as also occurs with SB415286 (SB4), a selective GSK3ß inhibitor. Our findings also indicate that these CDK inhibitors inhibit GSK3ß, representing a potential pharmacological mechanism involved in their neuroprotective properties. Thus, the increased activity of GSK3ß induced by LY294002 and detected by dephosphorylation at Ser9 was prevented by both compounds. Likewise, GSK3ß activity was measured by a radioactivity assay, revealing that CDK inhibitors and SB415286 prevented the increase in GSK3ß activity induced by PI3K inhibition. In addition, we analysed c-Jun, which is also a mediator of PI3K inhibition-induced apoptosis. However, neither of the CDK inhibitors nor SB415286 prevented the increase in c-Jun phosphorylation induced by PI3K inhibition. Therefore, our data identify GSK3ß as a crucial mediator of CGN apoptosis induced by PI3K inhibition and indicate that the antiapoptotic effects of CDKs are mediated by the inhibition of this pharmacological target.


Asunto(s)
Cerebelo/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Flavonoides/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Cerebelo/enzimología , Cerebelo/patología , Quinasas Ciclina-Dependientes/metabolismo , Citoprotección , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Neuronas/enzimología , Neuronas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Ratas Sprague-Dawley , Roscovitina , Transducción de Señal/efectos de los fármacos
18.
Eur J Neurosci ; 34(12): 2007-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22132728

RESUMEN

Disulfiram is an aldehyde dehydrogenase inhibitor used for the treatment of alcohol dependence and of cocaine addiction. It has been demonstrated that subchronic administration of disulfiram or N,N-diethyldithiocarbamate (DEDTC), the main derivative of disulfiram, to rats can produce central-peripheral distal axonopathy. However, few data regarding the axonal effects of these compounds in the central nervous system exist. Our previous studies have revealed DEDTC-induced axonal damage in the mouse brain during the course of postnatal development, together with alterations in axonal pathfinding and in the myelination process, with partial recovery during the post-treatment period. In order to gather new data about how this axonal damage and recovery occurs in the central nervous system, we performed an ultrastructural analysis of the axons located in the corpus callosum from mice treated with DEDTC during postnatal development. The axonal caliber throughout the axonal area, the maximum axonal diameter, the maximum fiber diameter, and the axonal circularity, at different postnatal stages [from postnatal day (P)9 to P30], were analyzed. In addition, parameters related to the myelinization process (number of myelinated axons, sheath thickness, and the ratio of myelinated axons to total axons) were evaluated. A reduction in the average value of axonal caliber during treatment and a delay in the axonal myelination process were detected. Whereas early recovery of individual axons occurred after treatment (P22), complete recovery of myelinated axons occurred at late postnatal stages (P42). Therefore, chronic treatment with dithiocarbamates requires periods of rest to encourage the recovery of myelinated axons.


Asunto(s)
Axones , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/ultraestructura , Ditiocarba/farmacología , Vaina de Mielina , Regeneración Nerviosa/fisiología , Adyuvantes Inmunológicos/farmacología , Animales , Axones/efectos de los fármacos , Axones/patología , Axones/ultraestructura , Cuerpo Calloso/patología , Cuerpo Calloso/fisiología , Humanos , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Ratas
19.
Neurochem Int ; 59(2): 159-67, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21683105

RESUMEN

In the present study we focused in the PI3K/Akt pathway which plays a key role in neuronal survival. Here we show that inhibition of PI3K/Akt by means of LY294002 induces apoptosis via a caspase-dependent and calpain-independent pathway in cerebellar granule neurons (CGNs). This finding was confirmed using zVAD-fmk, a widely caspase inhibitor that prevents apoptosis. For this purpose, we compared two models of apoptosis in CGNs, namely inhibition of PI3K/Akt, and serum potassium deprivation (S/K deprivation). In contrast to the S/K deprivation model, caspase-3 was not activated when PI3K is inhibited. Likewise, CDK5 activation was not involved in this apoptotic process, because calpain activation is responsible for the formation of CDK5/p25 neurotoxic form. However, S/K deprivation activated calpain, as it is shown by α-spectrin breakdown, and favoured the formation of CDK5/p25. Moreover, although PI3K/Akt inhibition enhanced pRbser780 phosphorylation, no increase in the expression of cell-cycle proteins, namely: cyclin D, cyclin E, CDK2 or CDK4, was detected. Furthermore, BrdU incorporation assay did not shown any increase in DNA synthesis. Likewise, PI3K/Akt inhibition increased GSK3ß activity and c-Jun phosphorylation, which implicates these two pathways in this apoptotic route. Although previous reports suggest that apoptosis induced in CGNs by LY294002 and S/K deprivation causes PI3K inhibition and increases GSK3ß activity and c-Jun phosphorylation activation, our results demonstrate substantial differences between them and point to a key role of GSK3ß in the apoptosis induced in CGNs in the two models tested.


Asunto(s)
Apoptosis/efectos de los fármacos , Cerebelo/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Western Blotting , Cerebelo/enzimología , Gránulos Citoplasmáticos/enzimología , Citometría de Flujo , Ratones , Neuronas/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Apoptosis ; 16(5): 536-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21424556

RESUMEN

In the present study dopaminergic neuroblastoma B65 cells were exposed to Camptothecin (CPT) (0.5-10 µM), either alone or in the presence of roscovitine (ROSC). The results show that CPT induces apoptosis through the activation of ataxia telangiectasia mutated (ATM)-induced cell-cycle alteration in neuroblastoma B65 cells. The apoptotic process is mediated through the activation of cystein proteases, namely calpain/caspases. However, whereas a pan-caspase inhibitor, zVADfmk, inhibited CPT-mediated apoptosis, a calpain inhibitor, calpeptin, did not prevent cell death. Interestingly, CPT also induces CDK5 activation and ROSC (25 µM) blocked CDK5, ATM activation and apoptosis (as measured by caspase-3 activation). By contrast, selective inhibition of ATM, by KU55933, and non-selective inhibition, by caffeine, did not prevent CPT-mediated apoptosis. Thus, we conclude that CDK5 is activated in response to DNA damage and that CDK5 inhibition prevents ATM and p53ser15 activation. However, pharmacological inhibition of ATM using KU55933 and caffeine suggests that ATM inhibition by ROSC is not the only mechanism that might explain the anti-apoptotic effects of this drug in this apoptosis model. Our findings have a potential clinical implication, suggesting that combinatory drugs in the treatment of cancer activation should be administered with caution.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Purinas/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Camptotecina/farmacología , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/agonistas , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Dipéptidos/farmacología , Humanos , Morfolinas/farmacología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Pironas/farmacología , Roscovitina , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...