Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203557

RESUMEN

The transition towards a sustainable society involves the utilization of lignocellulosic biomass as a renewable feedstock for materials, fuel, and base chemicals. Lignocellulose consists of cellulose, hemicellulose, and lignin, forming a complex, recalcitrant matrix where efficient enzymatic saccharification is pivotal for accessing its valuable components. This study investigated microbial communities from brackish Lauwersmeer Lake, in The Netherlands, as a potential source of xylan-degrading enzymes. Environmental sediment samples were enriched with wheat arabinoxylan (WAX) and beechwood glucuronoxylan (BEX), with enrichment on WAX showing higher bacterial growth and complete xylan degradation compared to BEX. Metagenomic sequencing revealed communities consisting almost entirely of bacteria (>99%) and substantial shifts in composition during the enrichment. The first generation of seven-day enrichments on both xylans led to a high accumulation of Gammaproteobacteria (49% WAX, 84% BEX), which were largely replaced by Alphaproteobacteria (42% WAX, 69% BEX) in the fourth generation. Analysis of the protein function within the sequenced genomes showed elevated levels of genes associated with the carbohydrate catabolic process, specifically targeting arabinose, xylose, and xylan, indicating an adaptation to the primary monosaccharides present in the carbon source. The data open up the possibility of discovering novel xylan-degrading proteins from other sources aside from the thoroughly studied Bacteroidota.

2.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930854

RESUMEN

Glycogen, an α-glucan polymer serving as an energy storage compound in microorganisms, is synthesized through distinct pathways (GlgC-GlgA or GlgE pathway). Both pathways involve multiple enzymes, with a shared glycogen branching enzyme (GBE). GBEs play a pivotal role in establishing α-1,6-linkages within the glycogen structure. GBEs are also used for starch modification. Understanding how these enzymes work is interesting for both glycogen synthesis in microorganisms, as well as novel applications for starch modification. This study focuses on a putative enzyme GH13_9 GBE (PoGBE13), present in a polysaccharide utilization locus (PUL) of Pontibacter sp. SGAir0037, and related to the GlgE glycogen synthesis pathway. While the PUL of Pontibacter sp. SGAir0037 contains glycogen-degrading enzymes, the branching enzyme (PoGBE13) was also found due to genetic closeness. Characterization revealed that PoGBE13 functions as a typical branching enzyme, exhibiting a relatively high branching over non-branching (hydrolysis and α-1,4-transferase activity) ratio on linear maltooctadecaose (3.0 ± 0.4). Besides the GH13_9 GBE, a GH57 (PoGH57) enzyme was selected for characterization from the same PUL due to its undefined function. The combined action of both GH13 and GH57 enzymes suggested 4-α-glucanotransferase activity for PoGH57. The characterization of these unique enzymes related to a GlgE glycogen synthesis pathway provides a more profound understanding of their interactions and synergistic roles in glycogen synthesis and are potential enzymes for use in starch modification processes. Due to the structural similarity between glycogen and starch, PoGBE13 can potentially be used for starch modification with different applications, for example, in functional food ingredients.


Asunto(s)
Glicósido Hidrolasas , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glucógeno/metabolismo , Glucógeno/biosíntesis , Polisacáridos/metabolismo , Polisacáridos/química , Polisacáridos/biosíntesis , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Almidón/metabolismo , Almidón/química , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
3.
FEBS Open Bio ; 14(7): 1133-1146, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735878

RESUMEN

Proteins featuring the Domain of Unknown Function 1735 are frequently found in Polysaccharide Utilization Loci, yet their role remains unknown. The domain and vicinity analyzer programs we developed mine the Kyoto Encyclopedia of Genes and Genomes and UniProt to enhance the functional prediction of DUF1735. Our datasets confirmed the exclusive presence of DUF1735 in Bacteroidota genomes, with Bacteroidetes thetaiotaomicron harboring 46 copies. Notably, 97.8% of DUF1735 are encoded in PULs, and 89% are N-termini of multimodular proteins featuring C-termini like Laminin_G_3, F5/8-typeC, and GH18 domains. Predominantly possessing a predicted lipoprotein signal peptide and sharing an immunoglobulin-like ß-sandwich fold with the BACON domain and the N-termini of SusE/F, DUF1735 likely functions as N-terminal, membrane-bound spacer for diverse C-termini involved in PUL-mediated carbohydrate utilization.


Asunto(s)
Polisacáridos , Polisacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Bacteroidetes/genética
4.
N Biotechnol ; 80: 1-11, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38163476

RESUMEN

Polysaccharide Utilization Loci (PULs) are physically linked gene clusters conserved in the Gram-negative phylum of Bacteroidota and are valuable sources for Carbohydrate Active enZyme (CAZyme) discovery. This study focuses on BD-ß-Gal, an enzyme encoded in a metagenomic PUL and member of the Glycoside Hydrolase family 154 (GH154). BD-ß-Gal showed exo-ß-galactosidase activity with regiopreference for hydrolyzing ß-d-(1,6) glycosidic linkages. Notably, it exhibited a preference for d-glucopyranosyl (d-Glcp) over d-galactopyranosyl (d-Galp) and d-fructofuranosyl (d-Fruf) at the reducing end of the investigated disaccharides. In addition, we determined the high resolution crystal structure of BD-ß-Gal, thus providing the first structural characterization of a GH154 enzyme. Surprisingly, this revealed an (α/α)6 topology, which has not been observed before for ß-galactosidases. BD-ß-Gal displayed low structural homology with characterized CAZymes, but conservation analysis suggested that the active site was located in a central cavity, with conserved E73, R252, and D253 as putative catalytic residues. Interestingly, BD-ß-Gal has a tetrameric structure and a flexible loop from a neighboring protomer may contribute to its reaction specificity. Finally, we showed that the founding member of GH154, BT3677 from Bacteroides thetaiotaomicron, described as ß-glucuronidase, displayed exo-ß-galactosidase activity like BD-ß-Gal but lacked a tetrameric structure.


Asunto(s)
Carbohidratos , Glicósido Hidrolasas , Glicósido Hidrolasas/química , Dominio Catalítico , Polisacáridos , beta-Galactosidasa , Especificidad por Sustrato , Cristalografía por Rayos X
5.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37447423

RESUMEN

Starch-like polymers can be created through the use of enzymatic modification with glycogen branching enzymes (GBEs). GBEs are categorized in the glycoside hydrolase (GH) family 13 and 57. Both GH13 and GH57 GBEs exhibit branching and hydrolytic activity. While GH13 GBEs are also capable of α-1,4-transglycosylation, it is yet unknown whether GH57 share this capability. Among the four crystal structures of GH57 GBEs that have been solved, a flexible loop with a conserved tyrosine was identified to play a role in the branching activity. However, it remains unclear whether this flexible loop is also involved in α-1,4-transglycosylation activity. We hypothesize that GH57 GBEs with the flexible loop and tyrosine are also capable of α-1,4-transglycosylation, similar to GH13 GBEs. The aim of the present study was to characterize the activity of GH57 GBEs to investigate a possible α-1,4-transglycosylation activity. Three GH57 GBEs were selected, one from Thermococcus kodakarensis with the flexible loop and two beta-strands; one from Thermotoga maritima, missing the flexible loop and beta-strands; and one from Meiothermus sp., missing the flexible loop but with the two beta-strands. The analysis of chain length distribution over time of modified maltooctadecaose, revealed, for the first time, that all three GH57 GBEs can generate chains longer than the substrate itself, showing that α-1,4-transglycosylation activity is generally present in GH57 GBEs.

6.
Polymers (Basel) ; 15(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38232006

RESUMEN

Glycogen is a biopolymer consisting of glycosyl units, with a linear backbone connected by α-1,4-linkages and branches attached via α-1,6-linkages. In microorganisms, glycogen synthesis involves multiple enzymes, with glycogen branching enzymes (GBEs) being vital for creating α-1,6-linkages. GBEs exist in two families: glycoside hydrolase (GH) 13 and GH57. Some organisms possess either a single GH13 or GH57 GBE, while others, such as Petrotoga mobilis, have both types of GBEs. In this study, the simultaneous use of a GH13 and GH57 GBE each from Petrotoga mobilis for α-glucan modification was investigated using a linear maltodextrin substrate with a degree of polymerization of 18 (DP18). The products from modifications by one or both GBEs in various combinations were analyzed and demonstrated a synergistic effect when both enzymes were combined, leading to a higher branch density in the glycogen structure. In this cooperative process, PmGBE13 was responsible for creating longer branches, whereas PmGBE57 hydrolyzed these branches, resulting in shorter lengths. The combined action of the two enzymes significantly increased the number of branched chains compared to when they acted individually. The results of this study therefore give insight into the role of PmGBE13 and PmGBE57 in glycogen synthesis, and show the potential use of both enzymes in a two-step modification to create an α-glucan structure with short branches at a high branch density.

7.
Food Chem ; 393: 133294, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653995

RESUMEN

Glycogen branching enzymes (GBEs) have been used to generate new branches in starches for producing slowly digestible starches. The aim of this study was to expand the knowledge about the mode of action of these enzymes by identifying structural aspects of starchy substrates affecting the products generated by different GBEs. The structures obtained from incubating five GBEs (three from glycoside hydrolase family (GH) 13 and two from GH57) on five different substrates exhibited minor but statistically significant correlations between the amount of longer chains (degree of polymerization (DP) 9-24) of the product and both the amylose content and the degree of branching of the substrate (Pearson correlation coefficient of ≤-0.773 and ≥0.786, respectively). GH57 GBEs mainly generated large products with long branches (100-700 kDa and DP 11-16) whereas GH13 GBEs produced smaller products with shorter branches (6-150 kDa and DP 3-10).


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Amilopectina/química , Amilosa/química , Glucógeno , Glicósido Hidrolasas , Almidón/química
8.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566004

RESUMEN

Acetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a ß-(1→4)-linked D-xylopyranosyl (Xylp) backbone that can be substituted with an acetyl group at O-2 and O-3 positions, and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xylp are well characterized; however, the previously studied AcXE from Flavobacterium johnsoniae (FjoAcXE) was the first to remove the acetyl group from 2-O-MeGlcpA-3-O-acetyl-substituted Xylp units, yet structural characteristics of these enzymes remain unspecified. Here, six homologs of FjoAcXE were produced and three crystal structures of the enzymes were solved. Two of them are complex structures, one with bound MeGlcpA and another with acetate. All homologs were confirmed to release acetate from 2-O-MeGlcpA-3-O-acetyl-substituted xylan, and the crystal structures point to key structural elements that might serve as defining features of this unclassified carbohydrate esterase family. Enzymes comprised two domains: N-terminal CBM domain and a C-terminal SGNH domain. In FjoAcXE and all studied homologs, the sequence motif around the catalytic serine is Gly-Asn-Ser-Ile (GNSI), which differs from other SGNH hydrolases. Binding by the MeGlcpA-Xylp ligand is directed by positively charged and highly conserved residues at the interface of the CBM and SGNH domains of the enzyme.


Asunto(s)
Esterasas , Xilanos , Acetatos , Esterasas/metabolismo , Especificidad por Sustrato , Xilanos/química
9.
Biotechnol Biofuels Bioprod ; 15(1): 30, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296345

RESUMEN

BACKGROUND: Substrate accessibility remains a key limitation to the efficient enzymatic deconstruction of lignocellulosic biomass. Limited substrate accessibility is often addressed by increasing enzyme loading, which increases process and product costs. Alternatively, considerable efforts are underway world-wide to identify amorphogenesis-inducing proteins and protein domains that increase the accessibility of carbohydrate-active enzymes to targeted lignocellulose components. RESULTS: We established a three-dimensional assay, PACER (plant cell wall model for the analysis of non-catalytic and enzymatic responses), that enables analysis of enzyme migration through defined lignocellulose composites. A cellulose/azo-xylan composite was made to demonstrate the PACER concept and then used to test the migration and activity of multiple xylanolytic enzymes. In addition to non-catalytic domains of xylanases, the potential of loosenin-like proteins to boost xylanase migration through cellulose/azo-xylan composites was observed. CONCLUSIONS: The PACER assay is inexpensive and parallelizable, suitable for screening proteins for ability to increase enzyme accessibility to lignocellulose substrates. Using the PACER assay, we visualized the impact of xylan-binding modules and loosenin-like proteins on xylanase mobility and access to targeted substrates. Given the flexibility to use different composite materials, the PACER assay presents a versatile platform to study impacts of lignocellulose components on enzyme access to targeted substrates.

10.
Carbohydr Polym ; 278: 118913, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973732

RESUMEN

Bifidobacteria confer many health effects, such as fiber digestion, pathogen inhibition and immune system maturation, especially in the newborn infant. The bifidobacterial exopolysaccharides (EPS) are often associated with important health effects, but their thorough investigation is hampered by lack of knowledge of the EPS localization, which is important for efficient EPS isolation. Here we present a straightforward isolation procedure to obtain EPS of four commercial bifidobacterial strains (B. adolescentis, B. bifidum, B. breve, and B. infantis), that are localized at the cell membrane (evidenced using cryo-EM). This procedure can be applied to other bifidobacterial strains, to facilitate the easy isolation and purification for biological experiments and future application in nutraceuticals. In addition, we demonstrate structural differences in the EPS of the four bifidobacterial strains, in terms of monosaccharide composition and size, highlighting the potential of the isolated EPS for determining specific structure-activity effects of bifidobacteria.


Asunto(s)
Bifidobacterium/química , Membrana Celular/química , Polisacáridos Bacterianos/aislamiento & purificación , Polisacáridos Bacterianos/química
11.
Enzyme Microb Technol ; 150: 109882, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34489035

RESUMEN

Glycogen branching enzymes (GBEs; 1,4-α-glucan branching enzyme; E.C. 2.4.1.18) have so far been described to be capable of both α-1,6-transglycosylation (branching) and α-1,4-hydrolytic activity. The aim of the present study was to elucidate the mode of action of three distantly related GBEs from the glycoside hydrolase family 13 by in depth analysis of the activity on a well-defined substrate. For this purpose, the GBEs from R. marinus (RmGBE), P. mobilis (PmGBE1), and B. fibrisolvens (BfGBE) were incubated with a highly pure fraction of a linear substrate of 18 anhydroglucose units. A well-known and characterized branching enzyme from E. coli (EcGBE) was also taken along. Analysis of the chain length distribution over time revealed that, next to hydrolytic and branching activity, all three GBEs were capable of generating chains longer than the substrate, clearly showing α-1,4-transglycosylation activity. Furthermore, the GBEs used those elongated chains for further branching. The sequential activity of elongation and branching enabled the GBEs to modify the substrate to a far larger extent than would have been possible with branching activity alone. Overall, the three GBEs acted ambiguous on the defined substrate. RmGBE appeared to have a strong preference towards transferring chains of nine anhydroglucose units, even during elongation, with a comparably low activity. BfGBE generated an array of elongated chains before using the chains for introducing branches while PmGBE1 exhibited a behaviour intermediate of the other two enzymes. On the basis of the mode of action revealed in this research, an updated model of the mechanism of GBEs was proposed now including the α-1,4-transglycosylation activity.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos , Glucógeno , Especificidad por Sustrato
12.
Nat Commun ; 12(1): 5424, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521828

RESUMEN

Stabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired 'stabilization' function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high ß-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the ß-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.

13.
Biotechnol Biofuels ; 14(1): 127, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059129

RESUMEN

BACKGROUND: Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS: We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/ß-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS: The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.

14.
Front Chem ; 9: 655983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041222

RESUMEN

Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93-96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M H2SO4 at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the ß-aryl ether (ß-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high ß-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high ß-O-4 butanosolv lignin in excellent yields.

15.
Carbohydr Polym ; 260: 117801, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712149

RESUMEN

Slowly digestible starches have received interest due to their lower increase of postprandial blood glucose and insulin levels and, hence, modification of starches towards slower digestibility has commercial interest. However, chemical characteristics driving enzymatic (digestive) degradation are not fully unraveled. The digestion properties of starches have been linked to their crystalline type, chain length distribution, amylose content or degree of branching, but content and length of relatively long side-chains in amylopectin has not been paid attention to. Therefore, this research focusses on the unique content and length of amylopectin side-chains from conventional and new starch sources (potato, corn, pea, and tulip) correlated to the enzymatic digestion. The rate of hydrolysis was found to be correlated with the crystalline type of starch, as previously suggested, however, the complete hydrolysis of all starches, independent of the crystalline type and source, was shown to be governed by the content of longer amylopectin chains.


Asunto(s)
Gelatina/química , Glucano 1,4-alfa-Glucosidasa/metabolismo , Almidón/metabolismo , alfa-Amilasas/metabolismo , Cristalización , Digestión , Hidrólisis , Espectroscopía de Resonancia Magnética , Pisum sativum/metabolismo , Solanum tuberosum/metabolismo , Almidón/química , Zea mays/metabolismo
16.
Anal Biochem ; 597: 113696, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32201136

RESUMEN

Amylolytic enzymes are a group of proteins degrading starch to its constitutional units. For high-throughput screening, simple yet accurate methods in addition to the reducing ends assays are required. In this article, the iodine assay, a photometric assay based on the intensely colored starch-iodine complex, was adapted to enable accurate and objective differentiation between enzyme and background activity using a newly introduced mathematical factor. The method was further improved by designing a simple setup for multiple time point detection and discussing the applicability of single wavelength measurements.


Asunto(s)
Almidón/análogos & derivados , alfa-Amilasas/análisis , Almidón/química , Almidón/metabolismo , alfa-Amilasas/metabolismo
17.
ChemSusChem ; 12(4): 848-857, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30589228

RESUMEN

Plant-derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step biocatalysis was performed to functionalize d-galactose-containing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from Agaricus bisporus followed by the ω-transaminase from Chromobacterium violaceum (Cvi-ω-TA). Formation of 6-amino-6-deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino-2-deoxy-6-aldo-d-galactose was confirmed by mass spectrometry. The activity of Cvi-ω-TA was highest towards 6-aldo-d-galactose, for which the highest yield of 6-amino-6-deoxy-d-galactose (67 %) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6-aldo-d-galactose.

18.
Appl Microbiol Biotechnol ; 102(23): 10091-10102, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30267127

RESUMEN

Carbohydrate-active enzyme discovery is often not accompanied by experimental validation, demonstrating the need for techniques to analyze substrate specificities of carbohydrate-active enzymes in an efficient manner. DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) is utmost appropriate for the analysis of glycoside hydrolases that have complex substrate specificities. DSA-FACE is demonstrated here to be a highly convenient method for the precise identification of the specificity of different α-L-arabinofuranosidases for (arabino)xylo-oligosaccharides ((A)XOS). The method was validated with two α-L-arabinofuranosidases (EC 3.2.1.55) with well-known specificity, specifically a GH62 α-L-arabinofuranosidase from Aspergillus nidulans (AnAbf62A-m2,3) and a GH43 α-L-arabinofuranosidase from Bifidobacterium adolescentis (BaAXH-d3). Subsequently, application of DSA-FACE revealed the AXOS specificity of two α-L-arabinofuranosidases with previously unknown AXOS specificities. PaAbf62A, a GH62 α-L-arabinofuranosidase from Podospora anserina strain S mat+, was shown to target the O-2 and the O-3 arabinofuranosyl monomers as side chain from mono-substituted ß-D-xylosyl residues, whereas a GH43 α-L-arabinofuranosidase from a metagenomic sample (AGphAbf43) only removes an arabinofuranosyl monomer from the smallest AXOS tested. DSA-FACE excels ionic chromatography in terms of detection limit for (A)XOS (picomolar sensitivity), hands-on and analysis time, and the analysis of the degree of polymerization and binding site of the arabinofuranosyl substituent.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Análisis de Secuencia de ADN , Aspergillus nidulans/enzimología , Bifidobacterium adolescentis/enzimología , Carbohidratos/análisis , Electroforesis , Colorantes Fluorescentes , Límite de Detección , Metagenómica , Podospora/enzimología , Especificidad por Sustrato
19.
PLoS One ; 13(7): e0201090, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30040824

RESUMEN

Agaricus bisporus consumes carbohydrates contained in wheat straw based compost used for commercial mushroom production. Double substituted arabinoxylan is part of the ~40% of the compost polysaccharides that are not degraded by A. bisporus during its growth and development. Genes encoding α-1,3-l-arabinofuranosidase (AXHd3) enzymes that act on xylosyl residues doubly substituted with arabinosyl residues are absent in this mushroom forming fungus. Here, the AXHd3 encoding hgh43 gene of Humicola insolens was expressed in A. bisporus with the aim to improve its substrate utilization and mushroom yield. Transformants secreted active AXHd3 in compost as shown by the degradation of double substituted arabinoxylan oligomers in an in vitro assay. However, carbohydrate composition and degree of arabinosyl substitution of arabinoxylans were not affected in compost possibly due to inaccessibility of the doubly substituted xylosyl residues.


Asunto(s)
Agaricus/enzimología , Compostaje , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Xilanos/metabolismo , Agaricus/clasificación , Agaricus/genética , Agaricus/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Proteínas Fúngicas/genética , Glicósido Hidrolasas/genética , Organismos Modificados Genéticamente , Sordariales/enzimología , Sordariales/genética , Transformación Genética
20.
Biotechnol Biofuels ; 11: 74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588659

RESUMEN

BACKGROUND: Acetylated 4-O-(methyl)glucuronoxylan (GX) is the main hemicellulose in deciduous hardwood, and comprises a ß-(1→4)-linked xylopyranosyl (Xylp) backbone substituted by both acetyl groups and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Whereas enzymes that target singly acetylated Xylp or doubly 2,3-O-acetyl-Xylp have been well characterized, those targeting (2-O-MeGlcpA)3-O-acetyl-Xylp structures in glucuronoxylan have remained elusive. RESULTS: An unclassified carbohydrate esterase (FjoAcXE) was identified as a protein of unknown function from a polysaccharide utilization locus (PUL) otherwise comprising carbohydrate-active enzyme families known to target xylan. FjoAcXE was shown to efficiently release acetyl groups from internal (2-O-MeGlcpA)3-O-acetyl-Xylp structures, an activity that has been sought after but lacking in known carbohydrate esterases. FjoAcXE action boosted the activity of α-glucuronidases from families GH67 and GH115 by five and nine times, respectively. Moreover, FjoAcXE activity was not only restricted to GX, but also deacetylated (3-O-Araf)2-O-acetyl-Xylp of feruloylated xylooligomers, confirming the broad substrate range of this new carbohydrate esterase. CONCLUSION: This study reports the discovery and characterization of the novel carbohydrate esterase, FjoAcXE. In addition to cleaving singly acetylated Xylp, and doubly 2,3-O-acetyl-Xylp, FjoAcXE efficiently cleaves internal 3-O-acetyl-Xylp linkages in (2-O-MeGlcpA)3-O-acetyl-Xylp residues along with densely substituted and branched xylooligomers; activities that until now were missing from the arsenal of enzymes required for xylan conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA