Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686501

RESUMEN

Controlling the multi-level assembly and morphological properties of conjugated polymers through structural manipulation has contributed significantly to the advancement of organic electronics. In this work, a redox active conjugated polymer, TPT-TT, composed of alternating 1,4-(2-thienyl)-2,5-dialkoxyphenylene (TPT) and thienothiophene (TT) units is reported with non-covalent intramolecular S⋯O and S⋯H-C interactions that induce controlled main-chain planarity and solid-state order. As confirmed by density functional theory (DFT) calculations, these intramolecular interactions influence the main chain conformation, promoting backbone planarization, while still allowing dihedral rotations at higher kinetic energies (higher temperature), and give rise to temperature-dependent aggregation properties. Thermotropic liquid crystalline (LC) behavior is confirmed by cross-polarized optical microscopy (CPOM) and closely correlated with multiple thermal transitions observed by differential scanning calorimetry (DSC). This LC behavior allows us to develop and utilize a thermal annealing treatment that results in thin films with notable long-range order, as shown by grazing-incidence X-ray diffraction (GIXD). Specifically, we identified a first LC phase, ranging from 218 °C to 107 °C, as a nematic phase featuring preferential face-on π-π stacking and edge-on lamellar stacking exhibiting a large extent of disorder and broad orientation distribution. A second LC phase is observed from 107 °C to 48 °C, as a smectic A phase featuring sharp, highly ordered out-of-plane lamellar stacking features and sharp tilted backbone stacking peaks, while the structure of a third LC phase with a transition at 48 °C remains unclear, but resembles that of the solid state at ambient temperature. Furthermore, the significance of thermal annealing is evident in the ∼3-fold enhancement of the electrical conductivity of ferric tosylate-doped annealed films reaching 55 S cm-1. More importantly, thermally annealed TPT-TT films exhibit both a narrow distribution of charge-carrier mobilities (1.4 ± 0.1) × 10-2 cm2 V-1 s-1 along with a remarkable device yield of 100% in an organic field-effect transistor (OFET) configuration. This molecular design approach to obtain highly ordered conjugated polymers in the solid state affords a deeper understanding of how intramolecular interactions and repeat-unit symmetry impact liquid crystallinity, solution aggregation, solution to solid-state transformation, solid-state morphology, and ultimately device applications.

2.
Mater Horiz ; 11(1): 134-140, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37937385

RESUMEN

Organic dosimeters offer unique advantages over traditional technologies, and they can be used to expand the capabilities of current radiation detection systems. In-depth knowledge of the mechanisms underlying the interaction between radiation and organic materials is essential for their widespread adoption. Here, we identified and quantitatively characterized the electronic traps generated during the operation of radiation dosimeters based on organic field-effect transistors. Spectral analysis of the trap density of states, along with optical and structural studies, revealed the origin of trap states as local structural disorder within the crystalline films. Our results provide new insights into the radiation-induced defects in organic dosimeters, and pave the way for the development of more efficient and reliable radiation detection devices.

3.
Nano Lett ; 23(23): 10864-10870, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37974048

RESUMEN

Molecular electronic devices offer a path to the miniaturization of electronic circuits and could potentially facilitate novel functionalities that can be embedded into the molecular structure. Given their nanoscale dimensions, device properties are strongly influenced by quantum effects, yet many of these phenomena have been largely overlooked. We investigated the mechanism responsible for current rectification in molecular diodes and found that efficient rectification is achieved by enhancing the Stark effect strength and enabling a large number of molecules to participate in transport. These findings provided insights into the operation of molecular rectifiers and guided the development of high-performance devices via the design of molecules containing polarizable aromatic rings. Our results are consistent for different molecular structures and are expected to have broad applicability to all molecular devices by answering key questions related to charge transport mechanisms in such systems.

4.
Nanoscale ; 15(25): 10480-10483, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37318269

RESUMEN

An introduction to the Nanoscale themed collection on nanomaterials for printed electronics, featuring exciting research on a variety of nanomaterials and techniques used for printed electronics.


Asunto(s)
Nanoestructuras , Electrónica/métodos
5.
Nanoscale ; 15(1): 171-176, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484707

RESUMEN

Ambient humidity plays a key role in the health and well-being of us and our surroundings, making it necessary to carefully monitor and control it. To achieve this goal, several types of instruments based on various materials and operating principles have been developed. Reducing the production costs for such systems without affecting their sensitivity and reliability would allow for broader use and greater efficiency. Organic materials are prime candidates for incorporation in humidity sensors given their extraordinary chemical diversity, low cost, and ease of processing. Here, we designed, assembled and tested humidity sensors based on molecular rectifiers that can electrically transduce the changes in the ambient humidity to offer accurate quantitative information in the range of 0 to 70% relative humidity. Their operation relies on the changes occurring in the electric field experienced by the molecular layer upon absorption of the polar water molecules, resulting in modifications in the height and shape of the tunneling barrier. The response is reversible and reproducible upon multiple cycles and, coupled with the simplicity of the device architecture and manufacturing, makes these nanoscale sensors attractive for incorporation in various applications.

6.
Sci Adv ; 8(31): eabq7224, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930649

RESUMEN

Molecular-scale diodes made from self-assembled monolayers (SAMs) could complement silicon-based technologies with smaller, cheaper, and more versatile devices. However, advancement of this emerging technology is limited by insufficient electronic performance exhibited by the molecular current rectifiers. We overcome this barrier by exploiting the charge-transfer state that results from co-assembling SAMs of molecules with strong electron donor and acceptor termini. We obtain a substantial enhancement in current rectification, which correlates with the degree of charge transfer, as confirmed by several complementary techniques. These findings provide a previously enexplored method for manipulating the properties of molecular electronic devices by exploiting donor/acceptor interactions. They also serve as a model test platform for the study of doping mechanisms in organic systems. Our devices have the potential for fast widespread adoption due to their low-cost processing and self-assembly onto silicon substrates, which could allow seamless integration with current technologies.

7.
Nat Commun ; 13(1): 3076, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654891

RESUMEN

The field of organic electronics has profited from the discovery of new conjugated semiconducting polymers that have molecular backbones which exhibit resilience to conformational fluctuations, accompanied by charge carrier mobilities that routinely cross the 1 cm2/Vs benchmark. One such polymer is indacenodithiophene-co-benzothiadiazole. Previously understood to be lacking in microstructural order, we show here direct evidence of nanosized domains of high order in its thin films. We also demonstrate that its device-based high-performance electrical and thermoelectric properties are not intrinsic but undergo rapid stabilization following a burst of ambient air exposure. The polymer's nanomechanical properties equilibrate on longer timescales owing to an orthogonal mechanism; the gradual sweating-out of residual low molecular weight solvent molecules from its surface. We snapshot the quasistatic temporal evolution of the electrical, thermoelectric and nanomechanical properties of this prototypical organic semiconductor and investigate the subtleties which play on competing timescales. Our study documents the untold and often overlooked story of a polymer device's dynamic evolution toward stability.

8.
Mater Horiz ; 9(1): 271-280, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34679148

RESUMEN

The charge-transfer (CT) state arising as a hybrid electronic state at the interface between charge donor and charge acceptor molecular units is important to a wide variety of physical processes in organic semiconductor devices. The exact nature of this state depends heavily on the nature and co-facial overlap between the donor and acceptor; however, altering this overlap is usually accompanied by extensive confounding variations in properties due to extrinsic factors, such as microstructure. As a consequence, establishing reliable relationships between donor/acceptor molecular structures, their molecular overlap, degree of charge transfer and physical properties, is challenging. Herein, we examine the electronic structure of a polymorphic system based on the donor dibenzotetrathiafulvalene (DBTTF) and the acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) in the form of high-quality single crystals varying in the donor-acceptor overlap. Using angle-resolved photoemission spectroscopy, we resolve the highest occupied molecular orbital states of the CT crystals. Analysis based on field-effect transistors allows us to probe the sub-gap states impacting hole and electron transport. Our results expand the understanding on the impact of donor and acceptor interactions on electronic structure and charge transport.

9.
Nat Mater ; 20(11): 1458-1460, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462568
10.
Nat Commun ; 12(1): 2352, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883553

RESUMEN

Solution processed organic field effect transistors can become ubiquitous in flexible optoelectronics. While progress in material and device design has been astonishing, low environmental and operational stabilities remain longstanding problems obstructing their immediate deployment in real world applications. Here, we introduce a strategy to identify the most probable and severe degradation pathways in organic transistors and then implement a method to eliminate the main sources of instabilities. Real time monitoring of the energetic distribution and transformation of electronic trap states during device operation, in conjunction with simulations, revealed the nature of traps responsible for performance degradation. With this information, we designed the most efficient encapsulation strategy for each device type, which resulted in fabrication of high performance, environmentally and operationally stable small molecule and polymeric transistors with consistent mobility and unparalleled threshold voltage shifts as low as 0.1 V under the application of high bias stress in air.

11.
ACS Appl Mater Interfaces ; 13(8): 10231-10238, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33591716

RESUMEN

Hybrid organic-inorganic metal-halide perovskites have emerged as versatile materials for enabling low-cost, mechanically flexible optoelectronic applications. The progress has been commendable; however, technological breakthroughs have outgrown the basic understanding of processes occurring in bulk and at device interfaces. Here, we investigated the photocurrent at perovskite/organic semiconductor interfaces in relation to the microstructure of electronically active layers. We found that the photocurrent response is significantly enhanced in the bilayer structure as a result of a more efficient dissociation of the photogenerated excitons and trions in the perovskite layer. The increase in the grain size within the organic semiconductor layer results in reduced trapping and further enhances the photocurrent by extending the photocarriers' lifetime. The photodetector responsivity and detectivity have improved by 1 order of magnitude in the optimized samples, reaching values of 6.1 ± 1.1 A W-1, and 1.5 × 1011 ± 4.7 × 1010 Jones, respectively, and the current-voltage hysteresis has been eliminated. Our results highlight the importance of fine-tuning film microstructure in reducing the loss processes in thin-film optoelectronics based on metal-halide semiconductors and provide a powerful interfacial design method to consistently achieve high-performance photodetectors.

12.
Adv Sci (Weinh) ; 7(18): 2001522, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32999849

RESUMEN

Radiation therapy is one of the most prevalent procedures for cancer treatment, but the risks of malignancies induced by peripheral beam in healthy tissues surrounding the target is high. Therefore, being able to accurately measure the exposure dose is a critical aspect of patient care. Here a radiation detector based on an organic field-effect transistor (RAD-OFET) is introduced, an in vivo dosimeter that can be placed directly on a patient's skin to validate in real time the dose being delivered and ensure that for nearby regions an acceptable level of low dose is being received. This device reduces the errors faced by current technologies in approximating the dose profile in a patient's body, is sensitive for doses relevant to radiation treatment procedures, and robust when incorporated into conformal large-area electronics. A model is proposed to describe the operation of RAD-OFETs, based on the interplay between charge photogeneration and trapping.

13.
Inorg Chem ; 59(12): 8070-8080, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32478526

RESUMEN

Crystallization from solutions containing 2,2'-[naphthalene-1,8:4,5-bis(dicarboximide)-N,N'-diyl]-bis(ethylammonium) diiodide ((NDIC2)I2) and PbI2 has been investigated. Eight different materials are obtained, either by variation of crystallization conditions or by subsequent thermal or solvent-induced transformations. Crystal structures have been determined for five materials. [(NDIC2)2Pb5I14(DMF)2]·4DMF (DMF = N,N-dimethylformamide) (1), [(NDIC2)Pb4I10]·4DMF (3), [(NDIC2)Pb2I6]·4NMP (NMP = N-methyl-2-pyrrolidone) (4), and [(NDIC2)Pb2I6]·2H2O (5) form 1-dimensional (1D) chains consisting of PbI6 (and, in the case of 1, PbI5(DMF)) octahedra, either solely face-sharing or a mixture of face-sharing and vertex-sharing. The structure of [(NDIC2)3Pb5I16]·6NMP (2) contains 0D clusters; these consist of three PbI6 octahedra and two unusually coordinated lead centers that exhibit three relatively short Pb-I bonds, two very long Pb-I contacts, and η2-coordination of an aromatic ring of NDIC2 to the lead. Close contacts between iodide ions and the imide rings of NDIC2 in four of the structures suggest that an iodide-to-NDIC2 charge-transfer interaction may be responsible for the observed red coloration of the materials. The optical and electrical properties of 1 have been studied; its onset of absorption is at 2.0 eV, and its conductivity was measured as 5.4 × 10-5 ± 1.1 × 10-5 S m-1.

14.
ACS Appl Mater Interfaces ; 11(20): 18564-18570, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31050879

RESUMEN

One of the simplest molecular-scale electronic devices is the molecular rectifier. In spite of considerable efforts aimed at understanding structure-property relationships in these systems, devices with predictable and stable electronic properties are yet to be developed. Here, we demonstrate highly efficient current rectification in a new class of compounds that form self-assembled monolayers on silicon. We achieve this by exploiting the coupling of the molecules with the top electrode which, in turn, controls the position of the relevant molecular orbitals. The molecules consist of a silane anchoring group and a nitrogen-substituted benzene ring, separated by a propyl group and imine linkage, and result from a simple, robust, and high-yield synthetic procedure. We find that when incorporated in molecular diodes, these compounds can rectify current by as much as 3 orders of magnitude, depending on their structure, with a maximum rectification ratio of 2635 being obtained in ( E)-1-(4-cyanophenyl)- N-(3-(triethoxysilyl) propyl)methanimine (average Ravg = 1683 ± 458, at an applied voltage of 2 V). This performance is on par with that of the best molecular rectifiers obtained on metallic electrodes, but it has the advantage of lower cost and more efficient integration with current silicon technologies. The development of molecular rectifiers on silicon may yield hybrid systems that can expand the use of silicon toward novel functionalities governed by the molecular species grafted onto its surface.

15.
Chem Sci ; 10(45): 10543-10549, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32055377

RESUMEN

Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene "universal crystal engineering core". After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V-1 s-1.

16.
Nat Commun ; 9(1): 5130, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510263

RESUMEN

Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels of enhanced injection. We find that the method is effective for both organic small molecule and polymer semiconductors, where we achieved a contact resistance as low as 200 Ωcm and device charge carrier mobilities as high as 20 cm2V-1s-1, independent of the applied gate voltage.


Asunto(s)
Compuestos Orgánicos/química , Polímeros/química , Semiconductores , Transistores Electrónicos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Propiedades de Superficie
17.
Adv Funct Mater ; 3(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29230154

RESUMEN

Organic field-effect transistor (OFET) performance is dictated by its composition and geometry, as well as the quality of the organic semiconductor (OSC) film, which strongly depends on purity and microstructure. When present, impurities and defects give rise to trap states in the bandgap of the OSC, lowering device performance. Here, 2,8-difluoro-5,11-bis(triethylsilylethynyl)-anthradithiophene is used as a model system to study the mechanism responsible for performance degradation in OFETs due to isomer coexistence. The density of trapping states is evaluated through temperature dependent current-voltage measurements, and it is discovered that OFETs containing a mixture of syn- and anti-isomers exhibit a discrete trapping state detected as a peak located at ~ 0.4 eV above the valence-band edge, which is absent in the samples fabricated on single-isomer films. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations do not point to a significant difference in electronic band structure between individual isomers. Instead, it is proposed that the dipole moment of the syn-isomer present in the host crystal of the anti-isomer locally polarizes the neighboring molecules, inducing energetic disorder. The isomers can be separated by applying gentle mechanical vibrations during film crystallization, as confirmed by the suppression of the peak and improvement in device performance.

18.
Proc Natl Acad Sci U S A ; 114(33): E6739-E6748, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28739934

RESUMEN

The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

19.
J Chem Phys ; 146(21): 214705, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28595390

RESUMEN

In this study, the electron-phonon coupling constants of the mixed-stack organic semiconductor anthracene-pyromellitic dianhydride (A-PMDA) are determined from experimental resonant Raman and absorption spectra of the charge transfer (CT) exciton using a time-dependent resonant Raman model. The reorganization energies of both intermolecular and intramolecular phonons are determined and compared with theoretical estimates derived from density functional theory calculations; they are found to agree well. We found that the dominant contribution to the total reorganization energy is due to intramolecular phonons, with intermolecular phonons only contributing a small percentage. This work goes beyond prior studies of the electron-phonon coupling in A-PMDA by including the coupling of all Raman-active phonons to the charge transfer exciton. The possibility of orientational disorder in A-PMDA at 80 K is inferred from the inhomogeneous broadening of the absorption line shape.

20.
ACS Appl Mater Interfaces ; 9(21): 18120-18126, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28485580

RESUMEN

Solution-processable electronic devices are highly desirable due to their low cost and compatibility with flexible substrates. However, they are often challenging to fabricate due to the hydrophobic nature of the surfaces of the constituent layers. Here, we use a protein solution to modify the surface properties and to improve the wettability of the fluoropolymer dielectric Cytop. The engineered hydrophilic surface is successfully incorporated in bottom-gate solution-deposited organic field-effect transistors (OFETs) and hybrid organic-inorganic trihalide perovskite field-effect transistors (HTP-FETs) fabricated on flexible substrates. Our analysis of the density of trapping states at the semiconductor-dielectric interface suggests that the increase in the trap density as a result of the chemical treatment is minimal. As a result, the devices exhibit good charge carrier mobilities, near-zero threshold voltages, and low electrical hysteresis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...