Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 50(6): 1107-17, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24405281

RESUMEN

The acute respiratory distress syndrome (ARDS), a devastating lung disease that has no cure, is exacerbated by life-supportive mechanical ventilation that worsens lung edema and inflammation through the syndrome of ventilator-induced lung injury. Recently, the membrane ion channel transient receptor potential vanilloid 4 (TRPV4) on alveolar macrophages was shown to mediate murine lung vascular permeability induced by high-pressure mechanical ventilation. The objective of this study was to determine whether inhalation of nanoparticles (NPs) containing the TRPV4 inhibitor ruthenium red (RR) prevents ventilator-induced lung edema in mice. Poly-lactic-co-glycolic acid NPs containing RR were evaluated in vitro for their ability to block TRPV4-mediated calcium signaling in alveolar macrophages and capillary endothelial cells. Lungs from adult C57BL6 mice treated with nebulized NPs were then used in ex vivo ventilation perfusion experiments to assess the ability of the NPs to prevent high-pressure mechanical ventilation-induced lung edema. Poly-lactic-co-glycolic acid NPs (300 nm) released RR for 150 hours in vitro, and blocked TRPV4-mediated calcium signaling in cells up to 7 days after phagocytosis. Inhaled NPs deposited in alveoli of spontaneously breathing mice were rapidly phagocytosed by alveolar macrophages, and blocked increased vascular permeability from high-pressure mechanical ventilation for 72 hours in ex vivo ventilation perfusion experiments. These data offer proof of principle that inhalation of NPs containing a TRPV4 inhibitor prevents ventilator damage for several days, and imply that this novel drug delivery strategy could be used to target alveolar macrophages in patients at risk of ventilator-induced lung injury before initiating mechanical ventilation.


Asunto(s)
Nanopartículas/administración & dosificación , Edema Pulmonar/prevención & control , Rojo de Rutenio/administración & dosificación , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Administración por Inhalación , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Respiración/efectos de los fármacos , Respiración Artificial/métodos , Canales Catiónicos TRPV/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Ventiladores Mecánicos
2.
Sci Transl Med ; 4(159): 159ra147, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136042

RESUMEN

Preclinical drug development studies currently rely on costly and time-consuming animal testing because existing cell culture models fail to recapitulate complex, organ-level disease processes in humans. We provide the proof of principle for using a biomimetic microdevice that reconstitutes organ-level lung functions to create a human disease model-on-a-chip that mimics pulmonary edema. The microfluidic device, which reconstitutes the alveolar-capillary interface of the human lung, consists of channels lined by closely apposed layers of human pulmonary epithelial and endothelial cells that experience air and fluid flow, as well as cyclic mechanical strain to mimic normal breathing motions. This device was used to reproduce drug toxicity-induced pulmonary edema observed in human cancer patients treated with interleukin-2 (IL-2) at similar doses and over the same time frame. Studies using this on-chip disease model revealed that mechanical forces associated with physiological breathing motions play a crucial role in the development of increased vascular leakage that leads to pulmonary edema, and that circulating immune cells are not required for the development of this disease. These studies also led to identification of potential new therapeutics, including angiopoietin-1 (Ang-1) and a new transient receptor potential vanilloid 4 (TRPV4) ion channel inhibitor (GSK2193874), which might prevent this life-threatening toxicity of IL-2 in the future.


Asunto(s)
Interleucina-2/efectos adversos , Pulmón/patología , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Edema Pulmonar/inducido químicamente , Animales , Transporte Biológico/efectos de los fármacos , Barrera Alveolocapilar/efectos de los fármacos , Barrera Alveolocapilar/patología , Capilares/efectos de los fármacos , Capilares/patología , Progresión de la Enfermedad , Gases/metabolismo , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Science ; 337(6095): 738-42, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22767894

RESUMEN

Obstruction of critical blood vessels due to thrombosis or embolism is a leading cause of death worldwide. Here, we describe a biomimetic strategy that uses high shear stress caused by vascular narrowing as a targeting mechanism--in the same way platelets do--to deliver drugs to obstructed blood vessels. Microscale aggregates of nanoparticles were fabricated to break up into nanoscale components when exposed to abnormally high fluid shear stress. When coated with tissue plasminogen activator and administered intravenously in mice, these shear-activated nanotherapeutics induce rapid clot dissolution in a mesenteric injury model, restore normal flow dynamics, and increase survival in an otherwise fatal mouse pulmonary embolism model. This biophysical strategy for drug targeting, which lowers required doses and minimizes side effects while maximizing drug efficacy, offers a potential new approach for treatment of life-threatening diseases that result from acute vascular occlusion.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Fibrinolíticos/administración & dosificación , Oclusión Vascular Mesentérica/tratamiento farmacológico , Nanopartículas , Embolia Pulmonar/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Activador de Tejido Plasminógeno/administración & dosificación , Animales , Materiales Biomiméticos , Circulación Sanguínea , Hemodinámica , Hemorreología , Ácido Láctico , Masculino , Arterias Mesentéricas , Ratones , Ratones Endogámicos C57BL , Técnicas Analíticas Microfluídicas , Modelos Anatómicos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Estrés Mecánico , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...