Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 609(7929): 1038-1047, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36171374

RESUMEN

Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Reparación del ADN , Estrés Oxidativo , Regiones Promotoras Genéticas , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genes , Prueba de Complementación Genética , Mitosis , Mutación , Estrés Oxidativo/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Poli ADP Ribosilación , Regiones Promotoras Genéticas/genética , ARN/biosíntesis , ARN/genética , ARN Polimerasa II/metabolismo , Huso Acromático/metabolismo , Sitio de Iniciación de la Transcripción
2.
Nat Commun ; 12(1): 5156, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526504

RESUMEN

R-loops are by-products of transcription that must be tightly regulated to maintain genomic stability and gene expression. Here, we describe a mechanism for the regulation of the R-loop-specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11 (USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11 reduces SETX enrichment at KEAP1 promoter, leading to R-loop accumulation, enrichment of the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1 increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation. These data define a ubiquitination-dependent mechanism for SETX regulation, which is controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer and neurological disease.


Asunto(s)
ADN Helicasas/genética , ADN/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Enzimas Multifuncionales/genética , Procesamiento Proteico-Postraduccional , Proteostasis/genética , ARN Helicasas/genética , Tioléster Hidrolasas/genética , Línea Celular , Senescencia Celular/genética , ADN/química , ADN/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Enzimas Multifuncionales/antagonistas & inhibidores , Enzimas Multifuncionales/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Proteolisis , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/metabolismo , Ubiquitinación
3.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199458

RESUMEN

As we age, our bodies accrue damage in the form of DNA mutations. These mutations lead to the generation of sub-optimal proteins, resulting in inadequate cellular homeostasis and senescence. The build-up of senescent cells negatively affects the local cellular micro-environment and drives ageing associated disease, including neurodegeneration. Therefore, limiting the accumulation of DNA damage is essential for healthy neuronal populations. The naked mole rats (NMR) are from eastern Africa and can live for over three decades in chronically hypoxic environments. Despite their long lifespan, NMRs show little to no biological decline, neurodegeneration, or senescence. Here, we discuss molecular pathways and adaptations that NMRs employ to maintain genome integrity and combat the physiological and pathological decline in organismal function.


Asunto(s)
Adaptación Fisiológica/genética , Senescencia Celular/genética , Daño del ADN/genética , Estrés Oxidativo/genética , Envejecimiento/genética , Animales , ADN/genética , Homeostasis , Ratas Topo/genética , Estrés Oxidativo/fisiología
4.
Nat Neurosci ; 20(9): 1225-1235, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714954

RESUMEN

Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Rotura Cromosómica , Reparación del ADN/fisiología , Expansión de las Repeticiones de ADN/fisiología , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína C9orf72 , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas/metabolismo , Distribución Aleatoria , Ratas , Médula Espinal/metabolismo , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA