Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 8(10): 2133-2148, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102590

RESUMEN

Polymers of d-glutamic acid (PDGA) form the capsule of the highly virulent Ames strain of B. anthracis. PDGA is antiphagocytic and weakly immunogenic; it enables the bacteria to evade the innate immune responses. CapD is an enzyme that catalyzes the covalent anchoring of PDGA. CapD is an Ntn-amido hydrolase that utilizes an internal Thr-352 as its nucleophile and general acid and base. An internal cleavage produces a free N-terminal Thr-352 and a short and long polypeptide chain. The chains were circularly permuted (CP) to move Thr-352 to the N-terminus of the polypeptide. We previously showed that a branched PEG-CapDS334C-CP could protect mice (80% survival) against a 5 LD50 challenge with B. anthracis Ames without the use of antibiotics, monoclonals, or vaccines. In attempts to improve the in vivo circulation time of CapD and enhance its avidity to its polymeric substrate, an Fc-domain of a mouse IgG1 was fused to CapDS334C-CP and the linker length and sequence were optimized. The resulting construct, Fc-CapDS334C-CP, then was pegylated with a linear 2 kDa mPEG at S334C to produce mPEG-Fc-CapDS334C-CP. Interestingly, the fusion of the Fc-domain and incorporation of the S334C mutation imparted acid stability, but slightly reduced the kcat (∼ 2-fold lower). In vivo, the measured protein concentration in sera was higher for the Fc-fusion constructs compared to the mPEG-Fc-CapDS334C-CP. However, the exposure calculated from measured sera enzymatic activity was higher for the mPEG-CapDS334C-CP. The pegylated Fc-fusion was less active than the PEG-CapDS334C-CP, but detectable in sera at 24 h by immunoblot. Here we describe the engineering of a soluble, active, pegylated Fc-fusion of B. anthracis CapD (mPEG-Fc-CapD-CP) with activity in vitro, in serum, and on encapsulated bacteria.


Asunto(s)
Carbunco , Bacillus anthracis , Animales , Carbunco/tratamiento farmacológico , Carbunco/microbiología , Antibacterianos/metabolismo , Bacillus anthracis/genética , Ácido Glutámico/metabolismo , Hidrolasas/metabolismo , Inmunoglobulina G/metabolismo , Ratones , Polietilenglicoles
2.
Biochem Pharmacol ; 177: 113980, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32305437

RESUMEN

Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.


Asunto(s)
Catepsina A/antagonistas & inhibidores , Compuestos Organofosforados/química , Compuestos Organotiofosforados/química , Sarín/química , Soman/química , Acetilcolinesterasa/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Sitios de Unión , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Línea Celular , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/toxicidad , Cristalografía por Rayos X , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Células HEK293 , Humanos , Isoflurofato/química , Isoflurofato/farmacología , Cinética , Modelos Moleculares , Compuestos Organofosforados/toxicidad , Compuestos Organotiofosforados/toxicidad , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarín/toxicidad , Soman/toxicidad , Especificidad por Sustrato , Factores de Tiempo
3.
Biochemistry ; 58(52): 5351-5365, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31192586

RESUMEN

Cathepsin A (CatA, EC 3.4.16.5, UniProtKB P10619 ) is a human lysosomal carboxypeptidase. Counterintuitively, crystal structures of CatA and its homologues show a cluster of Glu and Asp residues binding the C-terminal carboxylic acid of the product or inhibitor. Each of these enzymes functions in an acidic environment and contains a highly conserved pair of Glu residues with side chain carboxyl group oxygens that are approximately 2.3-2.6 Šapart. In small molecules, carboxyl groups separated by ∼3 Šcan overcome the repulsive interaction by protonation of one of the two groups. The pKa of one group increases (pKa ∼ 11) and can be as much as ∼6 pH units higher than the paired group. Consequently, at low and neutral pH, one carboxylate can carry a net negative charge while the other can remain protonated and neutral. In CatA, E69 and E149 form a Glu pair that is important to catalysis as evidenced by the 56-fold decrease in kcat/Km in the E69Q/E149Q variant. Here, we have measured the pH dependencies of log(kcat), log(Km), and log(kcat/Km) for wild type CatA and its variants and have compared the measured pKa with calculated values. We propose a substrate-assisted mechanism in which the high pKa of E149 (>8.5) favors the binding of the carboxylate form of the substrate and promotes the abstraction of the proton from H429 of the catalytic triad effectively decreasing its pKa in a low-pH environment. We also identify a similar motif consisting of a pair of histidines in S-formylglutathione hydrolase.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Catepsina A/química , Catepsina A/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Catepsina A/genética , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...