Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 2551, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186428

RESUMEN

Respiratory complex I plays a central role in cellular energy metabolism coupling NADH oxidation to proton translocation. In humans its dysfunction is associated with degenerative diseases. Here we report the structure of the electron input part of Aquifex aeolicus complex I at up to 1.8 Å resolution with bound substrates in the reduced and oxidized states. The redox states differ by the flip of a peptide bond close to the NADH binding site. The orientation of this peptide bond is determined by the reduction state of the nearby [Fe-S] cluster N1a. Fixation of the peptide bond by site-directed mutagenesis led to an inactivation of electron transfer and a decreased reactive oxygen species (ROS) production. We suggest the redox-gated peptide flip to represent a previously unrecognized molecular switch synchronizing NADH oxidation in response to the redox state of the complex as part of an intramolecular feed-back mechanism to prevent ROS production.


Asunto(s)
Complejo I de Transporte de Electrón/química , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bacterias/química , Bacterias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/química , Mutagénesis Sitio-Dirigida , NAD/química , Oxidación-Reducción
2.
Phys Chem Chem Phys ; 20(30): 20023-20032, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30022212

RESUMEN

We simulate electron transfer within a fragment of the NADH:ubiquinone oxidoreductase (respiratory complex I) of the hyperthermophilic bacterium Aquifex aeolicus. We apply molecular dynamics simulations, thermodynamic integration, and a thermodynamic network least squares analysis to compute two key parameters of Marcus' theory of charge transfer, the thermodynamic driving force and the reorganization energy. Intramolecular contributions to the Gibbs free energy differences of electron and hydrogen transfer processes, ΔG, are accessed by calibrating against experimental redox titration data. This approach permits the computation of the interactions between the species NAD+, FMNH2, N1a-, and N3-, and the construction of a free energy surface for the flow of electrons within the fragment. We find NAD+ to be a strong candidate for the regulation of charge transfer.


Asunto(s)
Proteínas Bacterianas/química , Complejo I de Transporte de Electrón/química , Bacterias/química , Mononucleótido de Flavina/química , Proteínas Hierro-Azufre/química , Análisis de los Mínimos Cuadrados , Simulación de Dinámica Molecular , NAD/química , Oxidación-Reducción , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA