Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38363669

RESUMEN

Highly impaired individuals stand to benefit greatly from cutting-edge bionic technology, however concurrent functional deficits may complicate the adaptation of such technology. Here, we present a case in which a visually impaired individual with bilateral burn injury amputation was provided with a novel transradial neuromusculoskeletal prosthesis comprising skeletal attachment via osseointegration and implanted electrodes in nerves and muscles for control and sensory feedback. Difficulties maintaining implant hygiene and donning and doffing the prosthesis arose due to his contralateral amputation, ipsilateral eye loss, and contralateral impaired vision necessitating continuous adaptations to the electromechanical interface. Despite these setbacks, the participant still demonstrated improvements in functional outcomes and the ability to control the prosthesis in various limb positions using the implanted electrodes. Our results demonstrate the importance of a multidisciplinary, iterative, and patient-centered approach to making cutting-edge technology accessible to patients with high levels of impairment.


Asunto(s)
Miembros Artificiales , Biónica , Humanos , Implantación de Prótesis , Amputación Quirúrgica , Diazooxonorleucina
2.
Artículo en Inglés | MEDLINE | ID: mdl-38083324

RESUMEN

Prosthetic users need reliable control over their assistive devices to regain autonomy and independence, particularly for locomotion tasks. Despite the potential for myoelectric signals to reflect the users' intentions more accurately than external sensors, current motorized prosthetic legs fail to utilize these signals, thus hindering natural control. A reason for this challenge could be the insufficient accuracy of locomotion detection when using muscle signals in activities outside the laboratory, which may be due to factors such as suboptimal signal recording conditions or inaccurate control algorithms.This study aims to improve the accuracy of detecting locomotion during gait by utilizing classification post-processing techniques such as Linear Discriminant Analysis with rejection thresholds. We utilized a pre-recorded dataset of electromyography, inertial measurement unit sensor, and pressure sensor recordings from 21 able-bodied participants to evaluate our approach. The data was recorded while participants were ambulating between various surfaces, including level ground walking, stairs, and ramps. The results of this study show an average improvement of 3% in accuracy in comparison with using no post-processing (p-value < 0.05). Participants with lower classification accuracy profited more from the algorithm and showed greater improvement, up to 8% in certain cases. This research highlights the potential of classification post-processing methods to enhance the accuracy of locomotion detection for improved prosthetic control algorithms when using electromyogram signals.Clinical Relevance- Decoding of locomotion intent can be improved using post-processing techniques thus resulting in a more reliable control of lower limb prostheses.


Asunto(s)
Marcha , Locomoción , Humanos , Marcha/fisiología , Locomoción/fisiología , Caminata/fisiología , Electromiografía/métodos , Músculo Esquelético/fisiología
3.
J Neuroeng Rehabil ; 17(1): 13, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024528

RESUMEN

BACKGROUND: Arm weight compensation with rehabilitation robots for stroke patients has been successfully used to increase the active range of motion and reduce the effects of pathological muscle synergies. However, the differences in structure, performance, and control algorithms among the existing robotic platforms make it hard to effectively assess and compare human arm weight relief. In this paper, we introduce criteria for ideal arm weight compensation, and furthermore, we propose and analyze three distinct arm weight compensation methods (Average, Full, Equilibrium) in the arm rehabilitation exoskeleton 'ARMin'. The effect of the best performing method was validated in chronic stroke subjects to increase the active range of motion in three dimensional space. METHODS: All three methods are based on arm models that are generalizable for use in different robotic devices and allow individualized adaptation to the subject by model parameters. The first method Average uses anthropometric tables to determine subject-specific parameters. The parameters for the second method Full are estimated based on force sensor data in predefined resting poses. The third method Equilibrium estimates parameters by optimizing an equilibrium of force/torque equations in a predefined resting pose. The parameters for all three methods were first determined and optimized for temporal and spatial estimation sensitivity. Then, the three methods were compared in a randomized single-center study with respect to the remaining electromyography (EMG) activity of 31 healthy participants who performed five arm poses covering the full range of motion with the exoskeleton robot. The best method was chosen for feasibility tests with three stroke patients. In detail, the influence of arm weight compensation on the three dimensional workspace was assessed by measuring of the horizontal workspace at three different height levels in stroke patients. RESULTS: All three arm weight compensation methods reduced the mean EMG activity of healthy subjects to at least 49% compared with the no compensation reference. The Equilibrium method outperformed the Average and the Full methods with a highly significant reduction in mean EMG activity by 19% and 28% respectively. However, upon direct comparison, each method has its own individual advantages such as in set-up time, cost, or required technology. The horizontal workspace assessment in poststroke patients with the Equilibrium method revealed potential workspace size-dependence of arm height, while weight compensation helped maximize the workspace as much as possible. CONCLUSION: Different arm weight compensation methods were developed according to initially defined criteria. The methods were then analyzed with respect to their sensitivity and required technology. In general, weight compensation performance improved with the level of technology, but increased cost and calibration efforts. This study reports a systematic way to analyze the efficacy of different weight compensation methods using EMG. Additionally, the feasibility of the best method, Equilibrium, was shown by testing with three stroke patients. In this test, a height dependence of the workspace size also seemed to be present, which further highlights the importance of patient-specific weight compensation, particularly for training at different arm heights. TRIAL REGISTRATION: ClinicalTrials.gov,NCT02720341. Registered 25 March 2016.


Asunto(s)
Algoritmos , Dispositivo Exoesqueleto , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular , Adaptación Fisiológica/fisiología , Adulto , Peso Corporal , Electromiografía/métodos , Femenino , Humanos , Masculino , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto Joven
4.
IEEE Int Conf Rehabil Robot ; 2017: 72-77, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813796

RESUMEN

Highly impaired stroke patients at early stages of recovery are unable to generate enough muscle force to lift the weight of their own arm. Accordingly, task-related training is strongly limited or even impossible. However, as soon as partial or full arm weight support is provided, patients are enabled to perform arm rehabilitation training again throughout an increased workspace. In the literature, the current solutions for providing arm weight support are mostly mechanical. These systems have components that restrict the freedom of movement or entail additional disturbances. A scalable weight compensation for upper and lower arm that is online adjustable as well as generalizable to any robotic system is necessary. In this paper, a model-based feedforward weight compensation of upper and lower arm fulfilling these requirements is introduced. The proposed method is tested with the upper extremity rehabilitation robot ARMin V, but can be applied in any other actuated exoskeleton system. Experimental results were verified using EMG measurements. These results revealed that the proposed weight compensation reduces the effort of the subjects to 26% on average and more importantly throughout the entire workspace of the robot.


Asunto(s)
Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior/fisiología , Retroalimentación Fisiológica , Humanos , Rango del Movimiento Articular/fisiología , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...