Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1369356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765006

RESUMEN

Non-small cell lung carcinoma (NSCLC) accounts for 85% of lung cancers, the leading cause of cancer associated deaths in the US and worldwide. Within NSCLC tumors, there is a subpopulation of cancer cells termed cancer stem cells (CSCs) which exhibit stem-like properties that drive NSCLC progression, metastasis, relapse, and therapeutic resistance. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells that carry vital messages for short- and long-range intercellular communication. Numerous studies have implicated NSCLC CSC-derived EVs in the factors associated with NSCLC lethality. In this review, we have discussed mechanisms of EV-directed cross-talk between CSCs and cells of the tumor microenvironment that promote stemness, tumor progression and metastasis in NSCLC. The mechanistic studies discussed herein have provided insights for developing novel NSCLC diagnostic and prognostic biomarkers and strategies to therapeutically target the NSCLC CSC niche.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Células Madre Neoplásicas , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Comunicación Celular
2.
Cancer Res Commun ; 3(4): 607-620, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37077938

RESUMEN

Cancer stem cells (CSC) within non-small cell lung carcinoma (NSCLC) tumors drive NSCLC progression, metastasis, relapse, and intrinsic chemoresistance. Understanding the mechanisms that support the malignant phenotypes of NSCLC CSCs may provide insights for improved NSCLC therapeutic interventions. Here, we report that expression of RAB27B, a small GTPase, is significantly upregulated in NSCLC CSCs when compared with bulk cancer cells (BCC). Short hairpin RNA-mediated knockdown of RAB27B leads to a loss of stem cell marker gene expression and reduced NSCLC spheroid growth, clonal expansion, transformed growth, invasion, and tumorigenicity. We find that NSCLC CSCs secrete significantly more extracellular vesicles (EV) than BCCs, and that this is RAB27B-dependent. Furthermore, CSC-derived EVs, but not BCC-derived EVs, induce spheroid growth, clonal expansion, and invasion in BCCs. Finally, RAB27B is required for CSC-derived EV-induced stemness in BCCs. Taken together, our results indicate that RAB27B is required for maintenance of a highly tumorigenic, cancer-initiating, invasive stem-like cell population in NSCLC and RAB27B is involved in propagating EV-mediated communication from NSCLC CSCs to BCCs. Our findings further suggest that inhibition of RAB27B-dependent EV secretion may be a potential therapeutic strategy for NSCLC. Significance: Expression of RAB27B in CSCs leads to elevated levels of EVs that mediate communication between CSCs and BCCs that maintains a stem-like phenotype in NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Recurrencia Local de Neoplasia/metabolismo , Vesículas Extracelulares/genética , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Fenotipo
3.
Cancer Res ; 82(1): 90-104, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34737214

RESUMEN

ECT2 is an activator of RHO GTPases that is essential for cytokinesis. In addition, ECT2 was identified as an oncoprotein when expressed ectopically in NIH/3T3 fibroblasts. However, oncogenic activation of ECT2 resulted from N-terminal truncation, and such truncated ECT2 proteins have not been found in patients with cancer. In this study, we observed elevated expression of full-length ECT2 protein in preneoplastic colon adenomas, driven by increased ECT2 mRNA abundance and associated with APC tumor-suppressor loss. Elevated ECT2 levels were detected in the cytoplasm and nucleus of colorectal cancer tissue, suggesting cytoplasmic mislocalization as one mechanism of early oncogenic ECT2 activation. Importantly, elevated nuclear ECT2 correlated with poorly differentiated tumors, and a low cytoplasmic:nuclear ratio of ECT2 protein correlated with poor patient survival, suggesting that nuclear and cytoplasmic ECT2 play distinct roles in colorectal cancer. Depletion of ECT2 reduced anchorage-independent cancer cell growth and invasion independent of its function in cytokinesis, and loss of Ect2 extended survival in a Kras G12D Apc-null colon cancer mouse model. Expression of ECT2 variants with impaired nuclear localization or guanine nucleotide exchange catalytic activity failed to restore cancer cell growth or invasion, indicating that active, nuclear ECT2 is required to support tumor progression. Nuclear ECT2 promoted ribosomal DNA transcription and ribosome biogenesis in colorectal cancer. These results support a driver role for both cytoplasmic and nuclear ECT2 overexpression in colorectal cancer and emphasize the critical role of precise subcellular localization in dictating ECT2 function in neoplastic cells. SIGNIFICANCE: ECT2 overexpression and mislocalization support its role as a driver in colon cancer that is independent from its function in normal cell cytokinesis.


Asunto(s)
Neoplasias Colorrectales/genética , Genómica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Anciano , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones
4.
Cell Rep ; 37(8): 110054, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818553

RESUMEN

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.


Asunto(s)
Glioblastoma/genética , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/clasificación , Humanos , Isoenzimas/genética , Ratones , Oncogenes/genética , Proteína Quinasa C/genética , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología
5.
Adv Biol Regul ; 78: 100754, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32992230

RESUMEN

PRKCI is frequently overexpressed in multiple human cancers, and PKCι expression is often prognostic for poor patient survival, indicating that elevated PKCι broadly plays an oncogenic role in the cancer phenotype. PKCι drives multiple oncogenic signaling pathways involved in transformed growth, and transgenic mouse models have revealed that PKCι is a critical oncogenic driver in both lung and ovarian cancers. We now report that recurrent 3q26 copy number gain (CNG) is the predominant genetic driver of PRKCI mRNA expression in all major human cancer types exhibiting such CNGs. In addition to PRKCI, CNG at 3q26 leads to coordinate CNGs of ECT2 and SOX2, two additional 3q26 genes that collaborate with PRKCI to drive oncogenic signaling and tumor initiation in lung squamous cell carcinoma. Interestingly however, whereas 3q26 CNG is a strong driver of PRKCI mRNA expression across all tumor types examined, it has differential effects on ECT2 and SOX2 mRNA expression. In some tumors types, particularly those with squamous histology, all three 3q26 oncogenes are coordinately overexpressed as a consequence of 3q26 CNG, whereas in other cancers only PRKCI and ECT2 mRNA are coordinately overexpressed. This distinct pattern of expression of 3q26 genes corresponds to differences in genomic signatures reflective of activation of specific PKCι oncogenic signaling pathways. In addition to highly prevalent CNG, some tumor types exhibit monoallelic loss of PRKCI. Interestingly, many tumors harboring monoallelic loss of PRKCI express significantly lower PRKCI mRNA and exhibit evidence of WNT/ß-catenin signaling pathway activation, which we previously characterized as a major oncogenic pathway in a newly described, PKCι-independent molecular subtype of lung adenocarcinoma. Finally, we show that CNG-driven activation of PKCι oncogenic signaling predicts poor patient survival in many major cancer types. We conclude that CNG and monoallelic loss are the major determinants of tumor PRKCI mRNA expression across virtually all tumor types, but that tumor-type specific mechanisms determine whether these copy number alterations also drive expression of the collaborating 3q26 oncogenes ECT2 and SOX2, and the oncogenic PKCι signaling pathways activated through the collaborative action of these genes. Our analysis may be useful in identifying tumor-specific predictive biomarkers and effective PKCι-targeted therapeutic strategies in the multitude of human cancers harboring genetic activation of PRKCI.


Asunto(s)
Variaciones en el Número de Copia de ADN , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Isoenzimas/metabolismo , Neoplasias/genética , Oncogenes , Proteína Quinasa C/metabolismo , Transducción de Señal/genética , Cromosomas Humanos Par 3 , Humanos , Isoenzimas/genética , Neoplasias/enzimología , Neoplasias/patología , Proteína Quinasa C/genética , Análisis de Supervivencia
6.
J Biol Chem ; 295(24): 8214-8226, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32350115

RESUMEN

Epithelial cell-transforming sequence 2 (ECT2) is a guanine nucleotide exchange factor for Rho GTPases that is overexpressed in many cancers and involved in signal transduction pathways that promote cancer cell proliferation, invasion, and tumorigenesis. Recently, we demonstrated that a significant pool of ECT2 localizes to the nucleolus of non-small-cell lung cancer (NSCLC) cells, where it binds the transcription factor upstream binding factor 1 (UBF1) on the promoter regions of ribosomal DNA (rDNA) and activates rDNA transcription, transformed cell growth, and tumor formation. Here, we investigated the mechanism by which ECT2 engages UBF1 on rDNA promoters. Results from ECT2 mutagenesis indicated that the tandem BRCT domain of ECT2 mediates binding to UBF1. Biochemical and MS-based analyses revealed that protein kinase Cι (PKCι) directly phosphorylates UBF1 at Ser-412, thereby generating a phosphopeptide-binding epitope that binds the ECT2 BRCT domain. Lentiviral shRNA knockdown and reconstitution experiments revealed that both a functional ECT2 BRCT domain and the UBF1 Ser-412 phosphorylation site are required for UBF1-mediated ECT2 recruitment to rDNA, elevated rRNA synthesis, and transformed growth. Our findings provide critical molecular insight into ECT2-mediated regulation of rDNA transcription in cancer cells and offer a rationale for therapeutic targeting of UBF1- and ECT2-stimulated rDNA transcription for the management of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transformación Celular Neoplásica/metabolismo , ADN Ribosómico/metabolismo , Isoenzimas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Ribosómico/metabolismo , Secuencias de Aminoácidos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/patología , Humanos , Neoplasias Pulmonares/patología , Modelos Biológicos , Fosfopéptidos/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/química
7.
Cell Rep ; 30(3): 771-782.e6, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968252

RESUMEN

Lung squamous cell carcinoma (LSCC) is a prevalent form of lung cancer exhibiting distinctive histological and genetic characteristics. Chromosome 3q26 copy number gain (CNG) is a genetic hallmark of LSCC present in >90% of tumors. We report that 3q26 CNGs occur early in LSCC tumorigenesis, persist during tumor progression, and drive coordinate overexpression of PRKCI, SOX2, and ECT2. Overexpression of PRKCI, SOX2, and ECT2 in the context of Trp53 loss is sufficient to transform mouse lung basal stem cells into tumors with histological and genomic features of LSCC. Functionally, PRKCI and SOX2 collaborate to activate an extensive transcriptional program that enforces a lineage-restricted LSCC phenotype, whereas PRKCI and ECT2 collaborate to promote oncogenic growth. Gene signatures indicative of PKCι-SOX2 and PKCι-ECT2 signaling activity are enriched in the classical subtype of human LSCC and predict distinct therapeutic vulnerabilities. Thus, the PRKCI, SOX2, and ECT2 oncogenes represent a multigenic driver of LSCC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Cromosomas Humanos Par 3/genética , Isoenzimas/genética , Neoplasias Pulmonares/genética , Oncogenes , Proteína Quinasa C/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción SOXB1/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Neoplasias Pulmonares/patología , Masculino , Transducción de Señal , Transcripción Genética
9.
Cancer Cell ; 36(2): 156-167.e7, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31378680

RESUMEN

We report that mouse LSL-KrasG12D;Trp53fl/fl (KP)-mediated lung adenocarcinoma (LADC) tumorigenesis can proceed through both PKCι-dependent and PKCι-independent pathways. The predominant pathway involves PKCι-dependent transformation of bronchoalveolar stem cells (BASCs). However, KP mice harboring conditional knock out Prkci alleles (KPI mice) develop LADC tumors through PKCι-independent transformation of Axin2+ alveolar type 2 (AT2) stem cells. Transformed growth of KPI, but not KP, tumors is blocked by Wnt pathway inhibition in vitro and in vivo. Furthermore, a KPI-derived genomic signature predicts sensitivity of human LADC cells to Wnt inhibition, and identifies a distinct subset of primary LADC tumors exhibiting a KPI-like genotype. Thus, LADC can develop through both PKCι-dependent and PKCι-independent pathways, resulting in tumors exhibiting distinct oncogenic signaling and pharmacologic vulnerabilities.


Asunto(s)
Adenocarcinoma del Pulmón/enzimología , Transformación Celular Neoplásica/metabolismo , Genes ras , Isoenzimas/metabolismo , Neoplasias Pulmonares/enzimología , Proteína Quinasa C/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Isoenzimas/deficiencia , Isoenzimas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología , Carga Tumoral , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Small GTPases ; 10(5): 388-394, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-28657426

RESUMEN

The Rho GTPase family members Rac1, Cdc42 and RhoA play key contributory roles in the transformed phenotype of human cancers. Epithelial Cell Transforming Sequence 2 (Ect2), a guanine nucleotide exchange factor (GEF) for these Rho GTPases, has also been implicated in a variety of human cancers. We have shown that Ect2 is frequently overexpressed in both major forms of non-small cell lung cancer (NSCLC), lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC), which together make up approximately 70% of all lung cancer diagnoses. Furthermore, we have found that Ect2 is required for multiple aspects of the transformed phenotype of NSCLC cells including transformed growth and invasion in vitro and tumorigenesis in vivo. More recently, we showed that a major mechanism by which Ect2 drives KRAS-mediated LADC transformation is by regulating rRNA (rRNA) synthesis. However, it remains unclear whether Ect2 plays a similar role in ribosome biogenesis in LSCC. Here we demonstrate that Ect2 expression correlates positively with expression of ribosome biogenesis genes and with pre-ribosomal 45S RNA abundance in primary LSCC tumors. Furthermore, we demonstrate that Ect2 functionally regulates rRNA synthesis in LSCC cells. Based on these data, we propose that inhibition of Ect2-mediated nucleolar signaling holds promise as a potential therapeutic strategy for improved treatment of both LADC and LSCC.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Neoplásico/biosíntesis , ARN Ribosómico/biosíntesis , Transducción de Señal , Animales , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Ribosomas/metabolismo , Ribosomas/patología
11.
Mol Cell Oncol ; 5(5): e1190886, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30263934

RESUMEN

We have recently demonstrated that protein kinase Cι (PKCι) promotes a stem-like, tumor-initiating cell phenotype in KRAS-driven lung adenocarcinoma by activating a novel ELF3-NOTCH3 signaling axis.1 Combined PKCι and NOTCH inhibition was identified as a novel strategy for the treatment of KRAS-driven lung adenocarcinoma.

12.
Cancer Cell ; 31(2): 256-269, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28110998

RESUMEN

The guanine nucleotide exchange factor (GEF) epithelial cell transforming sequence 2 (Ect2) has been implicated in cancer. However, it is not clear how Ect2 causes transformation and whether Ect2 is necessary for tumorigenesis in vivo. Here, we demonstrate that nuclear Ect2 GEF activity is required for Kras-Trp53 lung tumorigenesis in vivo and that Ect2-mediated transformation requires Ect2-dependent rDNA transcription. Ect2 activates rRNA synthesis by binding the nucleolar transcription factor upstream binding factor 1 (UBF1) on rDNA promoters and recruiting Rac1 and its downstream effector nucleophosmin (NPM) to rDNA. Protein kinase Cι (PKCι)-mediated Ect2 phosphorylation stimulates Ect2-dependent rDNA transcription. Thus, Ect2 regulates rRNA synthesis through a PKCι-Ect2-Rac1-NPM signaling axis that is required for lung tumorigenesis.


Asunto(s)
Adenocarcinoma/etiología , Neoplasias Pulmonares/etiología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Proteínas Proto-Oncogénicas/fisiología , ARN Ribosómico/biosíntesis , Proteína p53 Supresora de Tumor/fisiología , Adenocarcinoma del Pulmón , Animales , Auranofina/farmacología , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Citocinesis , Humanos , Isoenzimas/fisiología , Ratones , Proteínas Nucleares/fisiología , Nucleofosmina , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/fisiología
13.
Small GTPases ; 8(1): 58-64, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27245608

RESUMEN

Lung cancer is the leading cause of cancer death in the US with ∼124,000 new cases annually, and a 5 y survival rate of ∼16%. Mutant KRAS-driven lung adenocarcinoma (KRAS LADC) is a particularly prevalent and deadly form of lung cancer. Protein kinase Cι (PKCι) is an oncogenic effector of KRAS that activates multiple signaling pathways that stimulate transformed growth and invasion, and maintain a KRAS LADC tumor-initiating cell (TIC) phenotype. PKCι inhibitors used alone and in strategic combination show promise as new therapeutic approaches to treatment of KRAS LADC. These novel drug combinations may improve clinical management of KRAS LADC.


Asunto(s)
Tiomalato Sódico de Oro/administración & dosificación , Isoenzimas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Sirolimus/administración & dosificación , Células A549 , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Tiomalato Sódico de Oro/farmacología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Mutación , Células Madre Neoplásicas/efectos de los fármacos , Sirolimus/farmacología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancer Cell ; 30(4): 505-507, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27728797

RESUMEN

In this issue of Cancer Cell, Ferone et al. demonstrate that SOX2 not only drives lung tumor formation but also restricts tumor lineage to squamous cell carcinoma (LSCC), regardless of cell of origin. This novel LSCC model should facilitate identification of key oncogenic drivers and treatment strategies for this lung cancer subtype.


Asunto(s)
Carcinoma de Células Escamosas/genética , Factores de Transcripción SOXB1/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares/genética , Ratones , Oncogenes
15.
Cancer Cell ; 29(3): 367-378, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26977885

RESUMEN

We report that the protein kinase Cι (PKCι) oncogene controls expression of NOTCH3, a key driver of stemness, in KRAS-mediated lung adenocarcinoma (LADC). PKCι activates NOTCH3 expression by phosphorylating the ELF3 transcription factor and driving ELF3 occupancy on the NOTCH3 promoter. PKCι-ELF3-NOTCH3 signaling controls the tumor-initiating cell phenotype by regulating asymmetric cell division, a process necessary for tumor initiation and maintenance. Primary LADC tumors exhibit PKCι-ELF3-NOTCH3 signaling, and combined pharmacologic blockade of PKCι and NOTCH synergistically inhibits tumorigenic behavior in vitro and LADC growth in vivo demonstrating the therapeutic potential of PKCι-ELF3-NOTCH3 signal inhibition to more effectively treat KRAS LADC.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Transformación Celular Neoplásica/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores Notch/metabolismo , Células Madre/metabolismo , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mutación/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptor Notch3 , Transducción de Señal/genética , Factores de Transcripción/metabolismo
16.
Adv Biol Regul ; 60: 47-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26754874

RESUMEN

Recurrent copy number variations (CNVs) are genetic alterations commonly observed in human tumors. One of the most frequent CNVs in human tumors involves copy number gains (CNGs) at chromosome 3q26, which is estimated to occur in >20% of human tumors. The high prevalence and frequent occurrence of 3q26 CNG suggest that it drives the biology of tumors harboring this genetic alteration. The chromosomal region subject to CNG (the 3q26 amplicon) spans from chromosome 3q26 to q29, a region containing ∼200 protein-encoding genes. The large number of genes within the amplicon makes it difficult to identify relevant oncogenic target(s). Whereas a number of genes in this region have been linked to the transformed phenotype, recent studies indicate a high level of cooperativity among a subset of frequently amplified 3q26 genes. Here we use a novel bioinformatics approach to identify potential driver genes within the recurrent 3q26 amplicon in lung squamous cell carcinoma (LSCC). Our analysis reveals a set of 35 3q26 amplicon genes that are coordinately amplified and overexpressed in human LSCC tumors, and that also map to a major LSCC susceptibility locus identified on mouse chromosome 3 that is syntenic with human chromosome 3q26. Pathway analysis reveals that 21 of these genes exist within a single predicted network module. Four 3q26 genes, SOX2, ECT2, PRKCI and PI3KCA occupy the hub of this network module and serve as nodal genes around which the network is organized. Integration of available genetic, genomic, biochemical and functional data demonstrates that SOX2, ECT2, PRKCI and PIK3CA are cooperating oncogenes that function within an integrated cell signaling network that drives a highly aggressive, stem-like phenotype in LSCC tumors harboring 3q26 amplification. Based on the high level of genomic, genetic, biochemical and functional integration amongst these 4 3q26 nodal genes, we propose that they are the key oncogenic targets of the 3q26 amplicon and together define a "3q26 OncCassette" that mediates 3q26 CNG-driven tumorigenesis. Genomic analysis indicates that the 3q26 OncCassette also operates in other major tumor types that exhibit frequent 3q26 CNGs, including head and neck squamous cell carcinoma (HNSCC), ovarian serous cancer and cervical cancer. Finally, we discuss how the 3q26 OncCassette represents a tractable target for development of novel therapeutic intervention strategies that hold promise for improving treatment of 3q26-driven cancers.


Asunto(s)
Cromosomas Humanos Par 3/genética , Neoplasias/genética , Animales , Cromosomas Humanos Par 3/metabolismo , Variaciones en el Número de Copia de ADN , Amplificación de Genes , Humanos , Ratones , Neoplasias/metabolismo , Oncogenes
17.
Med Sci (Basel) ; 4(1)2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-29083365

RESUMEN

A gradual loss of dopamine-producing nerve cells gives rise to a common neurodegenerative Parkinson's disease (PD). This disease causes a neurotransmitter imbalance in the brain and initiates a cascade of complications in the rest of the body that appears as distressing symptoms which include gait problems, tremor, gastrointestinal (GI) disorders and cognitive decline. To aid dopamine deficiency, treatment in PD patients includes oral medications, in addition to other methods such as deep brain stimulation and surgical lesioning. Scientists are extensively studying molecular and signaling mechanisms, particularly those involving phenotypic transcription factors and their co-regulatory proteins that are associated with neuronal stem cell (SC) fate determination, maintenance and disease state, and their role in the pathogenesis of PD. Advancement in scientific research and "personalized medicine" to augment current therapeutic intervention and minimize the side effects of chemotherapy may lead to the development of more effective therapeutic strategies in the near future. This review focuses on PD and associated GI complications and summarizes the current therapeutic modalities that include stem cell studies and combinatorial drug treatment.

18.
Clin Cancer Res ; 21(3): 505-13, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25646180

RESUMEN

The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation, including the maintenance of the cancer stem cell (CSC) phenotype. Preclinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspects of transformation attributed to CSCs, including drug resistance, relapse, and metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened [such as vismodegib, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE225), PF-04449913, LY2940680, LEQ 506, and TAK-441], have demonstrated good efficacy as monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited activity in other tumor types. This lack of success is likely due to many factors, including a lack of patient stratification in early trials, cross-talk between Hh and other oncogenic signaling pathways that can modulate therapeutic response, and a limited knowledge of Hh pathway activation mechanisms in CSCs from most tumor types. Here, we discuss Hh signaling mechanisms in the context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new therapeutic strategies that hold the potential to expand considerably the scope and therapeutic efficacy of Hh-directed anticancer therapy.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Animales , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Investigación Biomédica Traslacional
19.
Cancer Cell ; 25(2): 139-51, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24525231

RESUMEN

We report that two oncogenes coamplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). Protein kinase Cι (PKCι) phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog (Hh) acyltransferase (HHAT) that catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically, and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell-autonomous Hh signaling axis.


Asunto(s)
Aciltransferasas/metabolismo , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/patología , Isoenzimas/metabolismo , Neoplasias Pulmonares/patología , Proteína Quinasa C/metabolismo , Factores de Transcripción SOXB1/metabolismo , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/genética , Animales , Apoptosis , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas para Inmunoenzimas , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regiones Promotoras Genéticas/genética , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/genética , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Tumorales Cultivadas
20.
Biochem Pharmacol ; 88(1): 1-11, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24231509

RESUMEN

Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family. The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions. Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer.


Asunto(s)
Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Neoplasias/tratamiento farmacológico , Oncogenes/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...