Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38664998

RESUMEN

Fungal anthraquinones dermocybin and dermorubin are attractive alternatives for synthetic dyes but their metabolism is largely unknown. We conducted a qualitative in vitro study to identify their metabolism using human liver microsomes and cytosol, as well as recombinant human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes. Additionally, liver microsomal and cytosolic fractions from rat, mouse and pig were used. Following incubations of the biocolourants with the enzymes in the presence of nicotinamide adenine dinucleotide phosphate, UDP-glucuronic acid, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or S-adenosyl methionine (SAM) to enable CYP oxidation, glucuronidation, sulfonation or methylation, we observed several oxidation and conjugation metabolites for dermocybin but none for dermorubin. Human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A7 catalysed dermocybin oxidation. The formation of dermocybin glucuronides was catalysed by human UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10 and 2B15. Human SULT1B1, 1C2 and 2A1 sulfonated dermocybin. Dermocybin oxidation was faster than conjugation in human liver microsomes. Species differences were seen in dermocybin glucuronidation between human, rat, mouse and pig. In conclusion, many CYP and conjugation enzymes metabolized dermocybin, whereas dermorubin was not metabolized in human liver fractions in vitro. The results indicate that dermocybin would be metabolized in humans in vivo.

2.
J Nutr Metab ; 2023: 5599789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034183

RESUMEN

Consumption of a Western diet is an important risk factor for several chronic diseases including nonalcoholic fatty liver disease (NAFLD), but its effect on the xenobiotic metabolizing enzyme activities in the liver has been studied incompletely. In this study, male LDLr-/-ApoB100/100 mice were fed with Western diet (WD) or a standard diet for five months to reveal the effects on drug metabolism such as cytochrome P450 (CYP) oxidation and conjugation activities in the liver. Hepatic steatosis, lobular inflammation, and early fibrosis were observed in WD fed mice, but not in chow diet control mice. When compared to the controls, the WD-fed mice had significantly decreased protein-normalized CYP probe activities of 7-ethoxyresorufinO-deethylation (52%), coumarin 7-hydroxylation (26%), 7-hydroxylation of 3-(3-fluoro-4-hydroxyphenyl)-6-methoxycoumarin (70%), 7-hydroxylation of 3-(4-trifluoromethoxyphenyl)-6-methoxycoumarin (78%), 7-hydroxylation of 3-(3-methoxyphenyl)coumarin (81%), and pentoxyresorufin O-depentylation (66%). Increased activity was seen significantly in sulfonation of 3-(4-methylphenyl)-7-hydroxycoumarin (289%) and cytosol catechol O-methyltranferase (COMT, 148%) in the WD group when compared to the controls. In conclusion, the WD-induced steatosis in male LDLr-/-ApoB100/100 mice was associated with decreased CYP oxidation reactions but had no clear effects on conjugation reactions of glucuronidation, sulfonation, and cytosolic catechol O-methylation. Consequently, the WD may decrease the metabolic elimination of drugs compared to healthier low-fat diets.

4.
Arch Toxicol ; 96(3): 793-808, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989853

RESUMEN

Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 µM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 µM. Helenalin inhibited CYP3A4 (IC50 = 18.7 µM) and CYP3A5 (IC50 = 62.6 µM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 µM, KI = 6.7 µM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Sesquiterpenos de Guayano/metabolismo , Animales , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , NADP/metabolismo , Ratas , Ratas Wistar , Sesquiterpenos de Guayano/administración & dosificación , Sesquiterpenos de Guayano/farmacología , Especificidad de la Especie
5.
ACS Omega ; 6(17): 11286-11296, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34056284

RESUMEN

Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min·mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min·mol CYP)], followed by CYP1A1 [16 ML/(min·mol CYP)] and CYP1A2 [0.6 ML/(min·mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes.

6.
Xenobiotica ; 51(11): 1207-1216, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33703988

RESUMEN

CYP2A13 enzyme is expressed in human extrahepatic tissues, while CYP2A6 is a hepatic enzyme. Reactions catalysed by CYP2A13 activate tobacco-specific nitrosamines and some other toxic xenobiotics in lungs.To compare oxidation characteristics and substrate-enzyme active site interactions in CYP2A13 vs CYP2A6, we evaluated CYP2A13 mediated oxidation characteristics of 23 coumarin derivatives and modelled their interactions at the enzyme active site.CYP2A13 did not oxidise six coumarin derivatives to corresponding fluorescent 7-hydroxycoumarins. The Km-values of the other coumarins varied 0.85-97 µM, Vmax-values of the oxidation reaction varied 0.25-60 min-1, and intrinsic clearance varied 26-6190 kL/min*mol CYP2A13). Km of 6-chloro-3-(3-hydroxyphenyl)-coumarin was 0.85 (0.55-1.15 95% confidence limit) µM and Vmax 0.25 (0.23-0.26) min-1, whereas Km of 6-hydroxy-3-(3-hydroxyphenyl)-coumarin was 10.9 (9.9-11.8) µM and Vmax 60 (58-63) min-1. Docking analyses demonstrated that 6-chloro or 6-methoxy and 3-(3-hydroxyphenyl) or 3-(4-trifluoromethylphenyl) substituents of coumarin increased affinity to CYP2A13, whereas 3-triazole or 3-(3-acetate phenyl) or 3-(4-acetate phenyl) substituents decreased it.The active site of CYP2A13 accepts more diversified types of coumarin substrates than the hepatic CYP2A6 enzyme. New sensitive and convenient profluorescent CYP2A13 substrates were identified, such as 6-chloro-3-(3-hydroxyphenyl)-coumarin having high affinity and 6-hydroxy-3-(3-hydroxyphenyl)-coumarin with high intrinsic clearance.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Hidrocarburo de Aril Hidroxilasas/metabolismo , Cumarinas , Citocromo P-450 CYP2A6 , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular
7.
Xenobiotica ; 51(3): 268-278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33289420

RESUMEN

Catechol-O-methyltransferase (COMT) methylates both endogenous and exogenous catechol compounds to inactive and safe metabolites. We first optimised conditions for a convenient and sensitive continuous fluorescence-based 6-O-methylation assay of esculetin, which we used for investigating the COMT activity in human, mouse, rat, dog, rabbit, and sheep liver cytosols and microsomes and in ten different rat tissues. Furthermore, we compared the inhibition potencies and mechanisms of two clinically used COMT inhibitors, entacapone and tolcapone, in these species. In most tissues, the COMT activity was at least three times higher in cytosol than in microsomes. In the rat, the highest COMT activity was found in the liver, followed by kidney, ileum, thymus, spleen, lung, pancreas, heart, brain, and finally, skeletal muscle. Entacapone and tolcapone were characterised as highly potent mixed type tight-binding inhibitors. The competitive inhibition type dominated over the uncompetitive inhibition with entacapone, whereas uncompetitive inhibition dominated with tolcapone. Rats, dogs, pigs, and sheep are high COMT activity species, in contrast to humans, mice, and rabbits; COMT activity is highest in the liver. Both entacapone and tolcapone are potent COMT inhibitors, but their inhibition mechanisms differ.


Asunto(s)
Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecol O-Metiltransferasa/metabolismo , Catecoles/farmacología , Nitrilos/farmacología , Escopoletina/metabolismo , Tolcapona/farmacología , Umbeliferonas/metabolismo , Animales , Catálisis , Perros , Humanos , Metilación , Ratones , Conejos , Ratas , Ovinos , Porcinos
8.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630278

RESUMEN

in vivo methods, such as spectrophotometric, fluorometric, mass spectrometric,and radioactivity-based techniques. In fluorescence-based assays, the reaction produces a fluorescentproduct from a nonfluorescent substrate or vice versa. Fluorescence-based enzyme assays areusually highly sensitive and specific, allowing measurements on small specimens of tissues withlow enzyme activities. Fluorescence assays are also amenable to miniaturization of the reactionmixtures and can thus be done in high throughput. 7-Hydroxycoumarin and its derivatives arewidely used as fluorophores due to their desirable photophysical properties. They possess a large -conjugated system with electron-rich and charge transfer properties. This conjugated structure leadsto applications of 7-hydroxycoumarins as fluorescent sensors for biological activities. We describe inthis review historical highlights and current use of coumarins and their derivatives in evaluatingactivities of the major types of xenobiotic-metabolizing enzyme systems. Traditionally, coumarinsubstrates have been used to measure oxidative activities of cytochrome P450 (CYP) enzymes. For thispurpose, profluorescent coumarins are very sensitive, but generally lack selectivity for individual CYPforms. With the aid of molecular modeling, we have recently described several new coumarin-basedsubstrates for measuring activities of CYP and conjugating enzymes with improved selectivity.


Asunto(s)
Cumarinas/química , Cumarinas/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Fluorescencia , Humanos , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Umbeliferonas/metabolismo , Xenobióticos/química
9.
Xenobiotica ; 50(8): 885-893, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31903849

RESUMEN

Sulfonation is an important high affinity elimination pathway for phenolic compounds.In this study sulfonation of 7-hydroxycoumarin and 13 its derivatives were evaluated in liver cytosols of human and six animal species. 7-hydroxycoumarin and its derivatives are strongly fluorescent, and their sulfate conjugates are nonfluorescent at excitation 405 nm and emission 460 nm. A convenient fluorescence based kinetic assay of sulfonation was established.The sulfonation rate of most of the 7-hydroxycoumarin derivatives was low in liver cytosol of human and pig, whereas it was high with most compounds in dog and intermediate in rat, mouse, rabbit, and sheep. Sulfonation of the 7-hydroxycoumarin derivatives followed Michaelis-Menten kinetics with Km values of 0.1-12 µM, Vmax of 0.005-1.7 µmol/(min * g protein) and intrinsic clearance (Vmax/Km) of 0.004-1.9 L/(min * g cytosolic protein).Fluorescence based measurement of sulfonation of 7-hydroxycoumarin derivatives provides a sensitive and convenient high-throughput assay to determine sulfonation rate in different species and tissues and can be applied to evaluate sulfonation kinetics and inhibition.


Asunto(s)
Citosol/metabolismo , Umbeliferonas/metabolismo , Animales , Perros , Humanos , Ratones , Conejos , Ratas , Ovinos , Porcinos
10.
Eur J Pharm Sci ; 141: 105118, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669387

RESUMEN

Beagle dog is a standard animal model for evaluating nonclinical pharmacokinetics of new drug candidates. Glucuronidation in intestine and liver is an important first-pass drug metabolic pathway, especially for phenolic compounds. This study evaluated the glucuronidation characteristics of several 7-hydroxycoumarin derivatives in beagle dog's intestine and liver in vitro. To this end, glucuronidation rates of 7-hydroxycoumarin (compound 1), 7-hydroxy-4-trifluoromethylcoumarin (2), 6-methoxy-7-hydroxycoumarin (3), 7-hydroxy-3-(4-tolyl)coumarin (4), 3-(4-fluorophenyl)coumarin (5), 7-hydroxy-3-(4-hydroxyphenyl)coumarin (6), 7-hydroxy-3-(4-methoxyphenyl)coumarin (7), and 7-hydroxy-3-(1H-1,2,4-tirazole)coumarin (8) were determined in dog's intestine and liver microsomes, as well as recombinant dog UGT1A enzymes. The glucuronidation rates of 1, 2 and 3 were 3-10 times higher in liver than in small intestine microsomes, whereas glucuronidation rates of 5, 6, 7 and 8 were similar in microsomes from both tissues. In the colon, glucuronidation of 1 and 2 was 3-5 times faster than in small intestine. dUGT1A11 glucuronidated efficiently all the substrates and was more efficient catalyst for 8 than any other dUGT1A. Other active enzymes were dUGT1A2 that glucuronidated efficiently 2, 3, 4, 5, 6 and 7, while dUGT1A10 glucuronidated efficiently 1, 2, 3, 4, 5 and 7. Kinetic analyses revealed that the compounds' Km values varied between 1.1 (dUGT1A10 and 2) and 250 µM (dUGT1A7 and 4). The results further strengthen the concept that dog intestine has high capacity for glucuronidation, and that different dUGT1As mediate glucuronidation with distinct substrates selectivity in dog and human.


Asunto(s)
Colon/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Intestino Delgado/metabolismo , Hígado/metabolismo , Umbeliferonas/metabolismo , Animales , Perros , Humanos , Microsomas/metabolismo
11.
Planta Med ; 85(6): 453-464, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30736072

RESUMEN

Scoparone, a major constituent of the Chinese herbal medicine Yin Chen Hao, expresses beneficial effects in experimental models of various diseases. The intrinsic doses and effects of scoparone are dependent on its metabolism, both in humans and animals. We evaluated in detail the metabolism of scoparone in human, mouse, rat, pig, dog, and rabbit liver microsomes in vitro and in humans in vivo. Oxidation of scoparone to isoscopoletin via 6-O-demethylation was the major metabolic pathway in liver microsomes from humans, mouse, rat, pig and dog, whereas 7-O-demethylation to scopoletin was the main reaction in rabbit. The scoparone oxidation rates in liver microsomes were 0.8 - 1.2 µmol/(min*g protein) in mouse, pig, and rabbit, 0.2 - 0.4 µmol/(min*g protein) in man and dog, and less than 0.1 µmol/(min*g) in rat. In liver microsomes of all species, isoscopoletin was oxidized to 3-[4-methoxy-ρ-(3, 6)-benzoquinone]-2-propenoate and esculetin, which was formed also in the oxidation of scopoletin. Human CYP2A13 exhibited the highest rate of isoscopoletin and scopoletin oxidation, followed by CYP1A1 and CYP1A2. Glucuronidation of isoscopoletin and scopoletin was catalyzed by the human UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B17. Dog was most similar to man in scoparone metabolism. Isoscopoletin glucuronide and sulfate conjugates were the major scoparone in vivo metabolites in humans, and they were completely excreted within 24 h in urine. Scoparone and its metabolites did not activate key nuclear receptors regulating CYP and UGT enzymes. These results outline comprehensively the metabolic pathways of scoparone in man and key preclinical animal species.


Asunto(s)
Cumarinas/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Animales , Cumarinas/farmacocinética , Perros , Medicamentos Herbarios Chinos/farmacocinética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Microsomas Hepáticos/metabolismo , Oxidación-Reducción , Conejos , Ratas , Ratas Wistar , Porcinos
12.
Xenobiotica ; 49(9): 1015-1024, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30272491

RESUMEN

Cytochrome P450 (CYP) enzymes constitute an essential xenobiotic metabolizing system that regulates the elimination of lipophilic compounds from the body. Convenient and affordable assays for CYP enzymes are important for assessing these metabolic pathways. In this study, 10 novel profluorescent coumarin derivatives with various substitutions at carbons 3, 6 and 7 were developed. Molecular modeling indicated that 3-phenylcoumarin offers an excellent scaffold for the development of selective substrate compounds for various human CYP forms, as they could be metabolized to fluorescent 7-hydroxycoumarin derivatives. Oxidation of profluorescent coumarin derivatives to fluorescent metabolites by 13 important human liver xenobiotic-metabolizing CYP forms was determined by enzyme kinetic assays. Four of the coumarin derivatives were converted to fluorescent metabolites by CYP1 family enzymes, with 6-methoxy-3-(4-trifluoromethylphenyl)coumarin being oxidized selectively by CYP1A2 in human liver microsomes. Another set of four compounds were metabolized by CYP2A6 and CYP1 enzymes. 7-Methoxy-3-(3-methoxyphenyl)coumarin was oxidized efficiently by CYP2C19 and CYP2D6 in a non-selective fashion. The advantages of the novel substrates were (1) an excellent signal-to-background ratio, (2) selectivity for CYP1 forms, and (3) convenient multiwell plate measurement, allowing for precise determination of potential inhibitors of important human hepatic forms CYP1A2, CYP2C19 and CYP2D6.


Asunto(s)
Cumarinas/química , Cumarinas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Benzoflavonas/metabolismo , Benzoflavonas/farmacología , Cumarinas/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/genética , Fluorescencia , Humanos , Inactivación Metabólica , Cinética , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oxidación-Reducción
13.
Rapid Commun Mass Spectrom ; 32(16): 1344-1352, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29788543

RESUMEN

RATIONALE: The toxic metabolites of pyrrolizidine alkaloids (PAs) are initially formed by cytochrome P450-mediated oxidation reactions and primarily eliminated as glutathione (GSH) conjugates. Although the reaction between the reactive metabolites and GSH can occur spontaneously, the role of the cytosolic enzymes in the process has not been studied. METHODS: The toxic metabolites of selected PAs (retrorsine, monocrotaline, senecionine, lasiocarpine, heliotrine or senkirkine) were generated by incubating them in 100 mM phosphate buffer (pH 7.4) containing liver microsomes of human, pig, rat or sheep, NADPH and reduced GSH in the absence or presence of human, pig, rat or sheep liver cytosolic fraction. The supernatants were analyzed using liquid chromatography connected to Finnigan LTQ ion-trap, Agilent QTOF or Thermo Scientific Q Exactive Focus quadrupole-orbitrap mass spectrometers. RESULTS: Retrorsine, senecionine and lasiocarpine yielded three GSH conjugates producing [M - H]- ions at m/z 439 (7-GSH-DHP (CHO)), m/z 441 (7-GSH-DHP (OH)) and m/z 730 (7,9-diGSH-DHP) in the presence of human liver cytosolic fraction. 7-GSH-DHP (CHO) was a novel metabolite. Monocrotaline, heliotrine and senkirkine did not produce this novel 7-GSH-DHP (CHO) conjugate. 7-GSH-DHP (CHO) disappeared when incubated with hydroxylamine, and a new oxime derivative was formed. This metabolite was formed only by the human liver cytosolic enzymes but not in the presence of rat or sheep liver cytosolic fractions under otherwise identical reaction conditions. CONCLUSIONS: 7-GSH-DHP (CHO) has not been reported before, and thus it was considered as a novel metabolite of PAs. This may clarify the mechanisms involved in PA detoxification and widely observed but less understood species differences in response to PA exposure.


Asunto(s)
Glutatión/metabolismo , Microsomas Hepáticos/metabolismo , Alcaloides de Pirrolicidina , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Oxidación-Reducción , Alcaloides de Pirrolicidina/análisis , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/metabolismo , Ratas , Ovinos , Porcinos
14.
J Enzyme Inhib Med Chem ; 33(1): 743-754, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29620427

RESUMEN

A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-ß-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-ß-hydroxysteroid dehydrogenase 2 - a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Estradiol/biosíntesis , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Diseño Asistido por Computadora , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
15.
Front Chem ; 6: 41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29552556

RESUMEN

Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM-1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

16.
Mol Pharm ; 15(3): 923-933, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29421866

RESUMEN

Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescent glucuronides by UGT1A10, four of them highly selectively by this enzyme. A new UGT1A10 mutant, 1A10-H210M, was prepared on the basis of the newly constructed model. Glucuronidation kinetics of the new compounds, in both wild-type and mutant UGT1A10 enzymes, revealed variable effects of the mutation. All six new C3-substituted 7-hydroxycoumarins were glucuronidated faster by human intestine than by liver microsomes, supporting the results obtained with recombinant UGTs. The most selective 4-(dimethylamino)phenyl and triazole C3-substituted 7-hydroxycoumarins could be very useful substrates in studying the function and expression of the human UGT1A10.


Asunto(s)
Diseño de Fármacos , Colorantes Fluorescentes/química , Glucuronosiltransferasa/metabolismo , Simulación del Acoplamiento Molecular , Imagen Molecular/métodos , Colorantes Fluorescentes/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/química , Glucuronosiltransferasa/genética , Humanos , Microsomas , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Especificidad por Sustrato , Umbeliferonas/química , Umbeliferonas/metabolismo
17.
Planta Med ; 84(5): 320-328, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28950382

RESUMEN

Scoparone is a natural bioactive compound in Chinese herbal medicines. It has numerous pharmacological actions, including liver protective, hypolipidemic, antitumor, and anti-inflammatory effects. The primary metabolism route of scoparone is O-demethylation to scopoletin or isoscopoletin catalyzed by CYP enzymes. The aims of our study were to identify the human CYP enzymes catalyzing scoparone 7-O-demethylation to scopoletin and to compare this oxidation reaction in liver microsomes among different species. A high throughput fluorescent-based assay method was developed to determine the scoparone 7-O-demethylation to scopoletin rate. The rate was 100 - 400 nmol/(min×g protein) in mouse and rabbit liver microsomes, 10 - 20 nmol/(min×g protein) in pig microsomes, 1 - 3 nmol/(min×g protein) in human and less than 1 nmol/(min×g protein) in rat liver microsomes. Human CYP1A1 (Km 13 µM and Vmax 0.8 min-1), CYP1A2 (Km 48 µM and Vmax 0.3 min-1), and CYP2A13 (Km 10 µM and Vmax 22 min-1) were the most efficient catalysts of the reaction. The CYP2A6 selective inhibitor pilocarpine and an antibody against mouse CYP2A5 inhibited scoparone 7-O-demethylation to scopoletin in rabbit, mouse, and pig liver microsomes, indicating involvement of CYP2A enzymes in the reaction. Hepatic scoparone 7-O-demethylation to scopoletin differed between species both with respect to the rate of reaction and catalyzing enzymes. These species differences need to be taken into account when testing scoparone pharmacokinetics in animals and humans.


Asunto(s)
Cumarinas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Escopoletina/análogos & derivados , Escopoletina/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Cumarinas/química , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Desmetilación , Femenino , Humanos , Masculino , Ratones , Microsomas Hepáticos/enzimología , Estructura Molecular , Oxidación-Reducción , Conejos , Ratas , Escopoletina/química , Porcinos
18.
Xenobiotica ; 46(1): 14-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26068522

RESUMEN

1. Information about the metabolism of compounds is essential in drug discovery and development, risk assessment of chemicals and further development of predictive methods. 2. In vitro and in silico methods were applied to evaluate the metabolic and inhibitory properties of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin with human CYP2A6, mouse CYP2A5 and pig CYP2A19. 3. 6-Methylcoumarin was oxidized to fluorescent 7-hydroxy-6-methylcoumarin by CYP2A6 (Km: 0.64-0.91 µM; Vmax: 0.81-0.89 min(-1)) and by CYP2A5 and CYP2A19. The reaction was almost completely inhibited at 10 µM 7-methylcoumarin in liver microsomes of human and mouse, but in pig only 40% inhibition was obtained with the anti-CYP2A5 antibody or with methoxsalen and pilocarpine. 7-Methylcoumarin was a mechanism-based inhibitor for CYP2A6, but not for the mouse and pig enzymes. 7-Formylcoumarin was a mechanism-based inhibitor for CYP2As of all species. 4. Docking and molecular dynamics simulations of 6-methylcoumarin and 7-methylcoumarin in the active sites of CYP2A6 and CYP2A5 demonstrated a favorable orientation of the 7-position of 6-methylcoumarin towards the heme moiety. Several orientations of 7-methylcoumarin were possible in CYP2A6 and CYP2A5. 5. These results indicate that the active site of CYP2A6 has unique interaction properties for ligands and differs in this respect from CYP2A5 and CYP2A19.


Asunto(s)
Cumarinas/farmacología , Citocromo P-450 CYP2A6/antagonistas & inhibidores , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Animales , Citocromo P-450 CYP2A6/metabolismo , Humanos , Hidroxilación , Concentración 50 Inhibidora , Cinética , Ratones , Modelos Moleculares , Oxidación-Reducción , Sus scrofa , Factores de Tiempo
19.
Drug Metab Lett ; 10(1): 56-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26648056

RESUMEN

BACKGROUND: Tobacco smoking is a leading cause of preventable disease and death globally. Nicotine is the main addictive component in tobacco. Nicotine is eliminated from the body by biotransformation in the liver to inactive metabolites. This reaction is catalyzed by the cytochrome P450 2A6 (CYP2A6) enzyme. Administering chemical inhibitors of CYP2A6 has been shown to slow down the elimination of nicotine with consequent reduction in number of cigarettes smoked. We have systematically developed small molecule CYP2A6 inhibitors with good balance between potency and CYP selectivity. OBJECTIVE: During this process we have noticed that many potent CYP2A6 inhibitors also inhibit other human liver CYP forms, most notably CYP1A2 and CYP2B6. This study aimed at defining common and distinct features of ligand binding to CYP1A2, CYP2A6 and CYP2B6 active sites. METHODS: We used our previous chemical inhibitor databases to construct improved 3-dimensional quantitative structureactivity relationship (3D-QSAR) models for CYP1A2, CYP2A6 and CYP2B6. RESULTS: Combined 3D-QSAR and docking procedures yielded precise information about the common and distinct interactions of inhibitors and the enzyme active sites. Positioning of hydrogen bond donor/acceptor atoms and the shape and volume of the compound defined the potency and specificity of inhibition. A novel potent and selective CYP1A2 inhibitor was found. CONCLUSION: This in silico approach will provide a means for very rapid and high throughput prediction of cross-inhibition of these three CYP enzymes.


Asunto(s)
Inhibidores del Citocromo P-450 CYP1A2/farmacología , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Inhibidores del Citocromo P-450 CYP2B6/farmacología , Citocromo P-450 CYP2B6/metabolismo , Diseño de Fármacos , Dominio Catalítico , Diseño Asistido por Computadora , Citocromo P-450 CYP1A2/química , Inhibidores del Citocromo P-450 CYP1A2/química , Inhibidores del Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6/química , Citocromo P-450 CYP2B6/química , Inhibidores del Citocromo P-450 CYP2B6/química , Inhibidores del Citocromo P-450 CYP2B6/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad Cuantitativa
20.
Chem Res Toxicol ; 28(10): 2034-44, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26395423

RESUMEN

There are species-related differences in the toxicity of pyrrolizidine alkaloids (PAs) partly attributable to the hepatic metabolism of these alkaloids. In this study, the metabolism of lasiocarpine, a potent hepatotoxic and carcinogenic food contaminant, was examined in vitro with human, pig, rat, mouse, rabbit, and sheep liver microsomes. A total of 12 metabolites (M1-M12) were detected with the human liver microsomes, of which M1, M2, M4, and M6 were unstable in the presence of reduced glutathione (GSH). With the exception of M3 and M8, the formation of all metabolites of lasiocarpine was catalyzed by CYP3A4 in humans. Tandem mass spectra (MS/MS) detected several new metabolites, termed M4-M7; their toxicological significance is unknown. M9 (m/z 398), identified as a demethylation product, was the main metabolite in all species, although the relative dominance of this metabolite was lower in humans. The level of the reactive metabolites, as measured by M1 ((3H-pyrrolizin-7-yl)methanol) and the GSH conjugate, was higher with the liver microsomes of susceptible species (human, pig, rat, and mouse) than with the species (rabbit and sheep) resistant to PA intoxication. In general, in addition to the new metabolites (M4-M7) that could make humans more susceptible to lasiocarpine-induced toxicity, the overall metabolite fingerprint detected with the human liver microsomes differed from that of all other species, yielding high levels of GSH-reactive metabolites.


Asunto(s)
Hígado/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Citocromo P-450 CYP3A/metabolismo , Glutatión/química , Glutatión/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Microsomas Hepáticos/metabolismo , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/toxicidad , Conejos , Ratas , Ovinos , Especificidad de la Especie , Porcinos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...