Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6701, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335119

RESUMEN

Extensive attention has focused on the structure optimization of perovskites, whereas rare research has mapped the structure heterogeneity within mixed hybrid perovskite films. Overlooked aspects include material and structure variations as a function of depth. These depth-dependent local structure heterogeneities dictate their long-term stabilities and efficiencies. Here, we use a nano-focused wide-angle X-ray scattering method for the mapping of film heterogeneities over several micrometers across lateral and vertical directions. The relative variations of characteristic perovskite peak positions show that the top film region bears the tensile strain. Through a texture orientation map of the perovskite (100) peak, we find that the perovskite grains deposited by sequential spray-coating grow along the vertical direction. Moreover, we investigate the moisture-induced degradation products in the perovskite film, and the underlying mechanism for its structure-dependent degradation. The moisture degradation along the lateral direction primarily initiates at the perovskite-air interface and grain boundaries. The tensile strain on the top surface has a profound influence on the moisture degradation.

2.
ACS Appl Mater Interfaces ; 13(23): 27696-27704, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34096698

RESUMEN

Optically responsive materials are present in everyday life, from screens to sensors. However, fabricating large-area, fossil-free materials for functional biocompatible applications is still a challenge today. Nanocelluloses from various sources, such as wood, can provide biocompatibility and are emerging candidates for templating organic optoelectronics. Silver (Ag) in its nanoscale form shows excellent optical properties. Herein, we combine both materials using thin-film large-area spray-coating to study the fabrication of optical response applications. We characterize the Ag nanoparticle formation by X-ray scattering and UV-vis spectroscopy in situ during growth on the nanocellulose template. The morphology and optical properties of the nanocellulose film are compared to the rigid reference surface SiO2. Our results clearly show the potential to tailor the energy band gap of the resulting hybrid material.

4.
Nanoscale Horiz ; 6(2): 132-138, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290482

RESUMEN

Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.5 ms the temporal evolution of interfacial morphology during the rapid formation of ultra-thin gold layers on thin polystyrene films. We monitor average non-equilibrium cluster geometries, transient interface morphologies and the effective near-surface gold diffusion. At 1 s sputter deposition, the polymer matrix has already been enriched with 1% gold and an intermixing layer has formed with a depth of over 3.5 nm. Furthermore, we experimentally observe unexpected changes in aspect ratios of ultra-small gold clusters growing in the vicinity of polymer chains. For the first time, this approach enables four-dimensional insights at atomic scales during the gold growth under non-equilibrium conditions.

5.
ACS Appl Mater Interfaces ; 12(51): 57627-57637, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33295752

RESUMEN

Slot-die printing, a large-scale deposition technique, is applied to fabricate mesoporous titania films. Printing is interesting, for example, for scaling up solar cells where titania films with an interconnected mesoporous network and a large surface-to-volume ratio are desired as photoanodes. A fundamental understanding of the structure evolution during printing is of high significance in tailoring these films. In this work, we provide important insights into the self-assembly of the slot-die-printed titania/polystyrene-block-poly(ethylene oxide) (PS-b-PEO) micelles into ordered hybrid structures in real time via in situ grazing-incidence small-angle X-ray scattering (GISAXS). GISAXS allows for tracking both vertical and lateral structure development of the film formation process. In the hybrid film, a face-centered cubic (FCC) structure is preferentially formed at the interfaces with air and with the substrate, while a defect-rich mixed FCC and body-centered cubic (BCC) structure forms in the bulk. After calcination, the surface and inner morphologies of the obtained nanostructured titania films are compared with the spin-coated analogues. In the printed films, the initially formed nanoscale structure of the hybrid film is preserved, and the resulting mesoporous titania film shows a superior order as compared with the spin-coated thin films which can be beneficial for future applications.

6.
ACS Appl Mater Interfaces ; 12(41): 46942-46952, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32941012

RESUMEN

For PbS quantum dot (QD)-based optoelectronic devices, gold is the most frequently used electrode material. In most device architectures, gold is in direct contact with the QD solid. To better understand the formation of the interface between gold and a close-packed QD layer at an early stage, in situ grazing-incidence small-angle X-ray scattering is used to observe the gold sputter deposition on a 1,2-ethanedithiol (EDT)-treated PbS QD solid. In the kinetics of gold layer growth, the forming and merging of small gold clusters (radius less than 1.6 nm) are observed at the early stages. The thereby formed medium gold clusters (radius between 1.9-2.4 nm) are influenced by the QDs' templating effect. Furthermore, simulations suggest that the medium gold clusters grow preferably along the QDs' boundaries rather than as a top coating of the QDs. When the thickness of the sputtered gold layer reaches 6.25 nm, larger gold clusters with a radius of 5.3 nm form. Simultaneously, a percolation layer with a thickness of 2.5 nm is established underneath the gold clusters. This fundamental understanding of the QD-gold interface formation will help to control the implementation of sputtered gold electrodes on close-packed QD solids in device manufacturing processes.

7.
Adv Sci (Weinh) ; 7(16): 2001117, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832364

RESUMEN

Solvent additives are known to modify the morphology of bulk heterojunction active layers to achieve high efficiency organic solar cells. However, the knowledge about the influence of solvent additives on the morphology degradation is limited. Hence, in operando grazing-incidence small and wide angle X-ray scattering (GISAXS and GIWAXS) measurements are applied on a series of PffBT4T-2OD:PC71BM-based solar cells prepared without and with solvent additives. The solar cells fabricated without a solvent additive, with 1,8-diiodoctane (DIO), and with o-chlorobenzaldehyde (CBA) additive show differences in the device degradation and changes in the morphology and crystallinity of the active layers. The mesoscale morphology changes are correlated with the decay of the short-circuit current J sc and the evolution of crystalline grain sizes is codependent with the decay of open-circuit voltage V oc. Without additive, the loss in J sc dominates the degradation, whereas with solvent additive (DIO and CBA) the loss in V oc rules the degradation. CBA addition increases the overall device stability as compared to DIO or absence of additive.

8.
Angew Chem Int Ed Engl ; 59(45): 20192-20200, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32705794

RESUMEN

A promising route to the synthesis of protein-mimetic materials that are capable of strong mechanics and complex functions is provided by intermolecular ß-sheet stacking. An understanding of the assembly mechanism on ß-sheet stacking at molecular-level and the related influencing factors determine the potential to design polymorphs of such biomaterials towards broad applications. Herein, we quantitatively reveal the air/water interface (AWI) parameters regulating the transformation from crowding amorphous aggregates to ordered phase and show that the polymorph diversity of ß-sheet stacking is regulated by the chain relaxation-crystallization mechanism. An amorphous macroscale amyloid-like nanofilm is formed at the AWI, in which unfolded protein chains are aligned in a short-range manner to form randomly packed ß-sheets. The subsequent biopolymer chain relaxation-crystallization to form nanocrystals is further triggered by removing the limitations of energy and space at the AWI.


Asunto(s)
Biopolímeros/química , Aire , Cristalización , Microscopía Electrónica de Transmisión , Nanopartículas/química , Proteínas/química , Agua
9.
IUCrJ ; 7(Pt 2): 268-275, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148854

RESUMEN

Efficient infiltration of a mesoporous titania matrix with conducting organic polymers or small molecules is one key challenge to overcome for hybrid photovoltaic devices. A quantitative analysis of the backfilling efficiency with time-of-flight grazing incidence small-angle neutron scattering (ToF-GISANS) and scanning electron microscopy (SEM) measurements is presented. Differences in the morphology due to the backfilling of mesoporous titania thin films are compared for the macromolecule poly[4,8-bis-(5-(2-ethyl-hexyl)-thio-phen-2-yl)benzo[1,2-b;4,5-b']di-thio-phene-2,6-diyl-alt-(4-(2-ethyl-hexyl)-3-fluoro-thieno[3,4-b]thio-phene-)-2-carboxyl-ate-2-6-diyl)] (PTB7-Th) and the heavy-element containing small molecule 2-pinacol-boronate-3-phenyl-phen-anthro[9,10-b]telluro-phene (PhenTe-BPinPh). Hence, a 1.7 times higher backfilling efficiency of almost 70% is achieved for the small molecule PhenTe-BPinPh compared with the polymer PTB7-Th despite sharing the same volumetric mass density. The precise characterization of structural changes due to backfilling reveals that the volumetric density of backfilled materials plays a minor role in obtaining good backfilling efficiencies and interfaces with large surface contact.

10.
Nanoscale Horiz ; 5(5): 880-885, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129402

RESUMEN

Colloidal PbS quantum dots (QDs) are attractive for solution-processed thin-film optoelectronic applications. In particular, directly achieving QD thin-films by printing is a very promising method for low-cost and large-scale fabrication. The kinetics of QD particles during the deposition process play an important role in the QD film quality and their respective optoelectronic performance. In this work, the particle self-organization behavior of small-sized QDs with an average diameter of 2.88 ± 0.36 nm is investigated for the first time in situ during printing by grazing-incidence small-angle X-ray scattering (GISAXS). The time-dependent changes in peak intensities suggest that the structure formation and phase transition of QD films happen within 30 seconds. The stacking of QDs is initialized by a templating effect, and a face-centered cubic (FCC) film forms in which a superlattice distortion is also found. A body-centered cubic nested FCC stacking is the final QD assembly layout. The small size of the inorganic QDs and the ligand collapse during the solvent evaporation can well explain this stacking behavior. These results provide important fundamental understanding of structure formation of small-sized QD based films prepared via large-scale deposition with printing with a slot die coater.

11.
ACS Appl Mater Interfaces ; 12(1): 1132-1141, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31829550

RESUMEN

Metal top electrodes such as gold are widely used in organic solar cells. The active layer can be optimized by modifications of the polymer band gap via side-chain engineering, and low band gap polymers based on benzodithiophene units such as PTB7 and PTB7-Th are successfully used. The growth of gold contacts on PTB7 and PTB7-Th films is investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) during the sputter deposition of gold. From GIWAXS, the crystal structure of the gold film is determined. Independent of the type of side chain, gold crystals form in the very early stages and improve in quality during the sputter deposition until the late stages. From GISAXS, the nanoscale structure is determined. Differences in terms of gold cluster size and growth phase limits for the two polymers are caused by the side-chain modification and result in a different surface coverage in the early phases. The changes in the diffusion and coalescence behavior of the forming gold nanoparticles cause differences in the morphology of the gold contact in the fully percolated regime, which is attributed to the different amount of thiophene rings of the side chains acting as nucleation sites.

12.
ACS Appl Mater Interfaces ; 11(45): 42313-42321, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31644257

RESUMEN

Printing of active layers of high-efficiency organic solar cells and morphology control by processing with varying solvent additive concentrations are important to realize real-world use of bulk-heterojunction photovoltaics as it enables both up-scaling and optimization of the device performance. In this work, active layers of the conjugated polymer with benzodithiophene units PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F are printed using meniscus guided slot-die coating. 1,8-Diiodooctane (DIO) is added to optimize the power conversion efficiency (PCE). The effect on the inner nanostructure and surface morphology of the material is studied for different solvent additive concentrations with grazing incidence small-angle X-ray scattering (GISAXS), grazing incidence wide-angle X-ray scattering (GIWAXS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Optical properties are studied with photoluminescence (PL), UV/vis absorption spectroscopy, and external quantum efficiency (EQE) measurements and correlated to the corresponding PCEs. The addition of 0.25 vol % DIO enhances the average PCE from 3.5 to 7.9%, whereas at higher concentrations the positive effect is less pronounced. A solar cell performance of 8.95% is obtained for the best printed device processed with an optimum solvent additive concentration. Thus, with the large-scale preparation method printing similarly well working solar cells can be realized as with the spin-coating method.

13.
ACS Appl Mater Interfaces ; 11(24): 21935-21945, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31136716

RESUMEN

Thin hybrid films with dense magnetic structures for sensor applications are printed using diblock copolymer (DBC) templating magnetic nanoparticles (MNPs). To achieve a high-density magnetic structure, the printing ink is prepared by mixing polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) with a large PS volume fraction and PS selective MNPs. Solvent vapor annealing is applied to generate a parallel cylindrical film morphology (with respect to the substrate), in which the MNP-residing PS domains are well separated by the PMMA matrix, and thus, the formation of large MNP agglomerates is avoided. Moreover, the morphologies of the printed thin films are determined as a function of the MNP concentration with real and reciprocal space characterization techniques. The PS domains are found to be saturated with MNPs at 1 wt %, at which the structural order of the hybrid films reaches a maximum within the studied range of MNP concentration. As a beneficial aspect, the MNP loading improves the morphological order of the thin DBC films. The dense magnetic structure endows the thin films with a faster superparamagnetic responsive behavior, as compared to thick films where identical MNPs are used, but dispersed inside the minority domains of the DBC.

14.
J Phys Chem Lett ; 10(9): 2058-2065, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30964305

RESUMEN

The ligand exchange process is a key step in fabrications of quantum dot (QD) optoelectronic devices. In this work, on the basis of grazing incidence X-ray scattering techniques, we find that the ligand exchange process with halide ions changes the PbS QD superlattice from face-centered-cubic to body-centered-cubic stacking, while the QD crystal lattice orientation also changes from preferentially "edge-up" to "corner-up". Thus, the QDs' shape is supposed to be the main factor for the alignment of QDs in close packed solids. Moreover, we tailor the alignment of the close packed solids by thermal treatments and further investigate their inner charge carrier dynamics by pump-probe transient absorption experiments. An overall better structure alignment optimizes the charge carrier hopping rate, as confirmed by the time dependence of the photon bleaching peak shift. The QD solid treated at 100 °C shows the best inner structure alignment with the best charge carrier hopping rate.

15.
Nanoscale ; 11(4): 2048-2055, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30644939

RESUMEN

Fabrication of porous, foam-like germanium-based (Ge-based) nanostructures is achieved with the use of the amphiphilic diblock copolymer polystyrene-b-polyethylene oxide as structure directing agent. Basic concepts of block copolymer assisted sol-gel synthesis are successfully realized based on the [Ge9]4- Zintl clusters as a precursor for Ge-based thin films. Material/elemental composition and crystalline Ge-based phases are investigated via X-ray photoelectron spectroscopy and X-ray diffraction measurements, respectively. Poor-good solvent pair induced phase separation leads to pore sizes in the Ge-based films up to 40 nm, which can be tuned through a change of the molar mixing ratio between polymer template and precursor as proven by grazing incidence small angle X-ray scattering and scanning electron microscopy.

16.
ACS Appl Mater Interfaces ; 11(3): 3125-3135, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30592400

RESUMEN

From a morphological perspective, the understanding of the influence of the [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) content on the morphology of the active layer is not complete in organic solar cells (OSCs) with bulk heterojunction (BHJ) configuration based on the low-bandgap polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2- b;4,5- b']dithiophene-2,6-diyl- alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th). In this work, we obtain the highest power conversion efficiency (PCE) of 10.5% for BHJ organic solar cells (OSCs) with a PTB7-Th/PC71BM weight ratio of 1:1.5. To understand the differences in PCEs caused by the PC71BM content, we investigate the morphology of PTB7-Th/PC71BM blend films in detail by determining the domain sizes, the polymer crystal structure, optical properties, and vertical composition as a function of the PC71BM concentration. The surface morphology is examined with atomic force microscopy, and the inner film morphology is probed with grazing incidence small-angle X-ray scattering. The PTB7-Th crystal structure is characterized with grazing incidence wide-angle X-ray scattering and UV/vis spectroscopy. X-ray reflectivity is employed to yield information about the film vertical composition. The results show that in PTB7-Th/PC71BM blend films, the increase of PC71BM content leads to an enhanced microphase separation and a decreased polymer crystallinity. Moreover, a high PC71BM concentration is found to decrease the polymer domain sizes and crystal sizes and to promote polymer conjugation length and formation of fullerene-rich and/or polymer-rich layers. The differences in photovoltaic performance are well explained by these findings.

17.
Nanoscale ; 10(25): 11930-11941, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29901680

RESUMEN

For sensor applications, superparamagnetic anisotropy is an indispensable property, which is typically achieved by employing an external field to guide the arrangement of magnetic nanoparticles (NPs). In the present investigation, the diblock copolymer polystyrene-block-poly(N-isopropylacrylamide) (PS-b-PNIPAM) is printed as a template to localize magnetic iron oxide NPs without any external field. Via microphase separation, cylindrical nanostructures of PS in a PNIPAM matrix are obtained, aligned perpendicular to the substrate. Since the magnetite NPs (Fe3O4) are functionalized with hydrophobic organic chains showing affinity to the PS blocks, they can selectively aggregate inside the PS cylinders. Moreover, solvent vapor annealing allows the achievement of nanostructures inside the hybrid system with a very high order, even at a high NP loading. Therefore, NPs can accumulate within PS domains to form perpendicularly aligned aggregates with high periodicity. The magnetic properties of the hybrid films are determined at various temperatures in two orthogonal directions (with PS cylinders vertical and parallel to the applied magnetic field). All hybrid films show superparamagnetism and a remarkable magnetic anisotropy is achieved at certain NP concentrations. This investigation shows a facile route to prepare superparamagnetic films with magnetic anisotropy and offers a novel possibility to future magnetic sensor fabrication.

18.
ChemSusChem ; 11(7): 1179-1186, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29442439

RESUMEN

Hierarchically structured titania films, exhibiting interconnected foam-like nanostructures and large-scale channel-type superstructures, were achieved in an energy-saving way at low temperatures by a polymer template-assisted sol-gel synthesis in combination with a wet-imprinting process. The surface morphology was probed with scanning electron microscopy and atomic force microscopy, whereas the inner morphology was characterized with grazing incidence small-angle X-ray scattering measurements. Compared to the initial hybrid films, the titania films showed reduced structure sizes caused by removal of the polymer template. UV/Vis measurements showed an additional light-scattering effect at various angles of light incidence in the hierarchically structured titania films, which resulted in higher light absorption in the wet-imprinted active layer. To give proof of viability, the titania films were evaluated as photoanodes for dye-free hybrid solar cells. The dye-free layout allowed for low-cost fabrication, avoided problems related to dye bleaching, and was a more environmentally friendly alternative to using dyes. Under different angles of light incidence, the enhancement in the short-circuit current density was in good agreement with the improvement in light absorption in the superstructured active layer, demonstrating a positive impact of the superstructures on the photovoltaic performance of hybrid solar cells.

19.
ACS Appl Mater Interfaces ; 9(50): 43724-43732, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29182302

RESUMEN

Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH3NH3PbI3) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

20.
ACS Appl Mater Interfaces ; 9(6): 5629-5637, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28106380

RESUMEN

The reproducible low-cost fabrication of functional polymer-metal interfaces via self-assembly is of crucial importance in organic electronics and organic photovoltaics. In particular, submonolayer and nanogranular systems expose highly interesting electrical, plasmonic, and catalytic properties. The exploitation of their great potential requires tailoring of the structure on the nanometer scale and below. To obtain full control over the complex nanostructural evolution at the polymer-metal interface, we monitor the evolution of the metallic layer morphology with in situ time-resolved grazing-incidence small-angle X-ray scattering during sputter deposition. We identify the impact of different deposition rates on the growth regimes: the deposition rate affects primarily the nucleation process and the adsorption-mediated growth, whereas rather small effects on diffusion-mediated growth processes are observed. Only at higher rates are initial particle densities higher due to an increasing influence of random nucleation, and an earlier onset of thin film percolation occurs. The obtained results are discussed to identify optimized morphological parameters of the gold cluster ensemble relevant for various applications as a function of the effective layer thickness and deposition rate. Our study opens up new opportunities to improve the fabrication of tailored metal-polymer nanostructures for plasmonic-enhanced applications such as organic photovoltaics and sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA