Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurooncol ; 169(2): 329-340, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38900237

RESUMEN

PURPOSE: Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS: Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS: Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION: We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Diferenciación Celular , Proliferación Celular , Glioblastoma , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/fisiología , Glioblastoma/terapia , Glioblastoma/patología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Terapia por Estimulación Eléctrica/métodos , Microambiente Tumoral , Movimiento Celular
2.
Nat Commun ; 13(1): 925, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177622

RESUMEN

Despite recent advances in cancer immunotherapy, certain tumor types, such as Glioblastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor immune response. Here we show, by applying an in-silico multidimensional model integrating spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor samples, that a subset of Interleukin-10-releasing HMOX1+ myeloid cells, spatially localizing to mesenchymal-like tumor regions, drive T-cell exhaustion and thus contribute to the immunosuppressive tumor microenvironment. These findings are validated using a human ex-vivo neocortical glioblastoma model inoculated with patient derived peripheral T-cells to simulate the immune compartment. This model recapitulates the dysfunctional transformation of tumor infiltrating T-cells. Inhibition of the JAK/STAT pathway rescues T-cell functionality both in our model and in-vivo, providing further evidence of IL-10 release being an important driving force of tumor immune escape. Our results thus show that integrative modelling of single cell and spatial transcriptomics data is a valuable tool to interrogate the tumor immune microenvironment and might contribute to the development of successful immunotherapies.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Interleucina-10/metabolismo , Células Mieloides/metabolismo , Linfocitos T/inmunología , Adulto , Anciano , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Comunicación Celular/inmunología , Línea Celular Tumoral , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Voluntarios Sanos , Hemo-Oxigenasa 1/metabolismo , Humanos , Inmunoterapia/métodos , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/metabolismo , Masculino , Persona de Mediana Edad , Neocórtex/citología , Neocórtex/inmunología , Neocórtex/patología , Cultivo Primario de Células , RNA-Seq , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Análisis de la Célula Individual , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Técnicas de Cultivo de Tejidos , Escape del Tumor , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA