Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 102(3): 102457, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36641994

RESUMEN

A comparison between 3-wk-old female turkeys (B.U.T. 6) and broilers (Ross 308) was performed to study the effects of species, dietary P, Ca, and phytase levels on gut mucosal phosphatase activity, myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, digestibility of P, Ca, and amino acids, and concentrations of myo-inositol in the digesta and blood. The experimental diets were corn-soybean meal-based and identical for both species. Two dietary P and Ca concentrations (CaP-: 4.1 g P/kg, 5.5 g Ca/kg and CaP+: 9.0 g P/kg, 12.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were used in a 2 × 2 factorial design and fed to the animals for 7 d in their third week of age. Each diet was randomly assigned to 6 broiler and 6 turkey pens, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and mucosa from the jejunum were collected. When fed CaP- without phytase supplementation, there were no differences between species in gut mucosal phosphatase activity, prececal InsP6 disappearance, and P and Ca digestibility, indicating a similar intrinsic capacity for phytate degradation in both species. When fed CaP+ without phytase supplementation, turkeys showed higher prececal InsP6 disappearance than broilers. Phytase supplementation increased prececal InsP6 disappearance and digestibility of P and Ca in both species. However, the phytase-induced increase in prececal InsP6 disappearance was more pronounced in broilers than in turkeys, possibly due to more adequate conditions for phytase activity in the broiler crop. In broilers, phytase supplementation increased amino acid digestibility overall, whereas, in turkeys, it increased with CaP+ and decreased with CaP-. In addition, the relationship between myo-inositol concentration in the ileum and blood differed between species, indicating differences in myo-inositol metabolism. It was concluded that 3-week-old turkeys and broilers differ in nutrient digestibility and InsP degradation in some segments of the digestive tract but have similar endogenous InsP6 degradation when fed low P and Ca diets.


Asunto(s)
6-Fitasa , Ácido Fítico , Animales , Femenino , Ácido Fítico/metabolismo , Fósforo/metabolismo , Suplementos Dietéticos , Pollos/metabolismo , 6-Fitasa/metabolismo , Pavos/metabolismo , Digestión , Dieta/veterinaria , Inositol/metabolismo , Membrana Mucosa , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
2.
Poult Sci ; 102(4): 102476, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36716675

RESUMEN

Female turkeys (B.U.T. 6) and broilers (Ross 308) were compared at 6 wk of age to evaluate the effects of species, dietary P, Ca, and phytase levels on myo-inositol hexakisphosphate (InsP6) degradation along the digestive tract, gut mucosal phosphatase activity, P and Ca digestibility, and myo-inositol concentrations in the digesta and blood. The environmental conditions and experimental corn-soybean meal-based diets were the same for both species. Four diets with either combination of 2 levels of P and Ca (CaP-: 4.0 g P/kg, 5.4 g Ca/kg and CaP+: 6.0 g P/kg, 8.0 g Ca/kg) and 2 levels of phytase supplementation (0 and 1,500 FTU/kg) were fed to the animals for 7 d at their sixth wk of age. Each diet was randomly assigned to 6 pens per species, with 10 birds each. After slaughter, blood, digesta from the crop, gizzard, duodenum, lower ileum, and jejunal mucosa were collected. Endogenous mucosal phosphatase activity in the jejunum was higher in turkeys than in broilers. Prececal InsP6 disappearance was also higher in turkeys than in broilers when phytase was not supplemented. Phytase supplementation led to a higher prececal InsP6 disappearance in broilers than in turkeys, likely due to different crop conditions such as moisture content. However, prececal P digestibility was higher in turkeys than broilers. Different relationships between myo-inositol concentration in the ileum digesta and blood were found, depending on the species. A comparison of the results with those obtained in 3-wk-old birds of a companion study showed that in diets with low Ca and P levels, prececal InsP6 disappearance increased with age in turkeys, but not in broilers. This coincided with changes in the conditions of the digestive tract, such as the water content in the crop, gizzard pH, and mucosal phosphatase activity. In conclusion, occurrence of differences in phytate degradation between turkeys and broilers, fed the same feed, depended on age and can be explained by different physiological development of the digestive tract.


Asunto(s)
6-Fitasa , Ácido Fítico , Femenino , Animales , Ácido Fítico/metabolismo , Fósforo/metabolismo , Pollos/fisiología , Pavos/metabolismo , 6-Fitasa/metabolismo , Digestión , Dieta/veterinaria , Suplementos Dietéticos , Minerales/metabolismo , Inositol/metabolismo , Membrana Mucosa , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
3.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683026

RESUMEN

AppA, the Escherichia coli periplasmic phytase of clade 2 of the histidine phosphatase (HP2) family, has been well-characterized and successfully engineered for use as an animal feed supplement. AppA is a 1D-6-phytase and highly stereospecific but transiently accumulates 1D-myo-Ins(2,3,4,5)P4 and other lower phosphorylated intermediates. If this bottleneck in liberation of orthophosphate is to be obviated through protein engineering, an explanation of its rather rigid preference for the initial site and subsequent cleavage of phytic acid is required. To help explain this behaviour, the role of the catalytic proton donor residue in determining AppA stereospecificity was investigated. Four variants were generated by site-directed mutagenesis of the active site HDT amino acid sequence motif containing the catalytic proton donor, D304. The identity and position of the prospective proton donor residue was found to strongly influence stereospecificity. While the wild-type enzyme has a strong preference for 1D-6-phytase activity, a marked reduction in stereospecificity was observed for a D304E variant, while a proton donor-less mutant (D304A) displayed exclusive 1D-1/3-phytase activity. High-resolution X-ray crystal structures of complexes of the mutants with a non-hydrolysable substrate analogue inhibitor point to a crucial role played by D304 in stereospecificity by influencing the size and polarity of specificity pockets A and B. Taken together, these results provide the first evidence for the involvement of the proton donor residue in determining the stereospecificity of HP2 phytases and prepares the ground for structure-informed engineering studies targeting the production of animal feed enzymes capable of the efficient and complete dephosphorylation of dietary phytic acid.


Asunto(s)
6-Fitasa , Proteínas de Escherichia coli , 6-Fitasa/metabolismo , Fosfatasa Ácida/metabolismo , Animales , Fosfatos de Dinucleósidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácido Fítico/metabolismo , Estudios Prospectivos , Protones
4.
Poult Sci ; 99(5): 2595-2607, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359595

RESUMEN

Effects of dietary available phosphorus (aP) and Ca levels and an Escherichia coli 6-phytase supplementation were studied in Lohmann LSL-Lite hens from 25 to 37 wk of age. Eighty-four hens were used in a completely randomized design with 7 treatments. The treatments were a positive control (PC) diet with 0.45% aP, 3.70% Ca, and 0.16% Na from 25 to 28 wk and 0.38% aP, 3.73% Ca, and 0.15% Na from 29 to 37 wk; a negative control (NC) diet, similar to the PC diet, with 0.22% aP, 3.00% Ca, and 0.13% Na from 25 to 28 wk and 0.19% aP, 3.02% Ca, and 0.13% Na from 29 to 37 wk; the NC diets supplemented with phytase at 150 (NC + 150), 300 (NC + 300), 600 (NC + 600), or 1,200 (NC + 1,200) phytase unit (FTU)/kg; and the PC diet supplemented with phytase at 1,200 (PC + 1,200) FTU/kg. Hen performance, eggshell, and bone quality were measured on a 4-wk basis. Bone breaking strength and ash and apparent ileal digestibility (AID) of P and Ca were determined at 37 wk. One- and 2-way ANOVA were conducted, and Tukey's range test was used to compare multiple means where P ≤ 0.05. No differences in hen performance, eggshell quality, bone breaking strength, bone ash, and P digestibility were observed between the PC and the NC treatments. The NC hens had lower cortical (P < 0.001) and trabecular + medullary bone mineral density (P = 0.004) and total bone mineral content (P < 0.001) than the PC hens. The PC + 1,200 increased cortical bone mineral density (P < 0.001). The reductions of aP and Ca in the NC diet were not deficient for performance but had a minor impact on bone mineralization. The NC + 600 and NC + 1,200 increased AID of P (P = 0.024), and all phytase treatments except the NC + 150 increased AID of Ca (P = 0.010) compared with the NC diet.


Asunto(s)
6-Fitasa/metabolismo , Calcificación Fisiológica/fisiología , Calcio de la Dieta/metabolismo , Digestión , Cáscara de Huevo/fisiología , Fósforo Dietético/metabolismo , 6-Fitasa/administración & dosificación , Alimentación Animal/análisis , Animales , Calcificación Fisiológica/efectos de los fármacos , Calcio/deficiencia , Pollos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Cáscara de Huevo/efectos de los fármacos , Femenino , Íleon/fisiología , Fósforo/deficiencia , Distribución Aleatoria
5.
J Anim Sci ; 98(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060531

RESUMEN

Two experiments (Exp.) with ileally cannulated growing barrows were conducted. The concentrations of positional inositol phosphate (InsP) isomers in ileal digesta and feces were determined, as well as the prececal and total tract phytate (InsP6) hydrolysis, and digestibility of dry matter, P, Ca, nitrogen, and gross energy. Prececal amino acid (AA) digestibility and digestive enzyme activities in ileal digesta were also studied. In both Exp., pigs had an initial body weight (BW) of 28 kg and were completely randomized to a Double Latin Square Design with eight pigs, four diets, and three periods of 12 d each. Feces and ileal digesta were collected for 5 d and 2 d, respectively. Pigs were housed individually in stainless steel metabolic units. Water was available ad libitum and feed was provided two times daily at an amount of 4% of mean BW. In Exp. 1, pigs received a corn-soybean meal (SBM)-based diet that was supplemented with 0, 750, 1,500, or 3,000 FTU of a microbial phytase/kg diet. In Exp. 2, pigs were allotted to a 2 × 2 arrangement of diets based on corn and SBM or an SBM-rapeseed cake (RSC) mix and phytase supplementation at 0 or 1,500 FTU/kg of diet. In ileal digesta of pigs fed without the phytase supplement, the dominating InsP isomers beside InsP6 were InsP5 isomers. The InsP pattern in ileal digesta changed with the inclusion of microbial phytase in both Exp., as there was a remarkable increase in Ins(1,2,5,6)P4 concentration (P < 0.001). In both Exp., the myo-inositol concentration in ileal digesta was greater upon phytase addition (P < 0.001). Without phytase supplementation, prececal and total tract P digestibility were low, whereas hardly any InsP6 was excreted in feces. There was no difference between prececal and total tract P digestibility values. For most AA studied in Exp. 2, prececal digestibility was lower (P < 0.01) when the diet contained RSC. However, phytase supplementation did not significantly affect prececal AA digestibility in both Exp. The present study showed that InsP6 disappearance by the end of the ileum can be increased up to around 90% in SBM- and SBM-RSC-based diets when microbial phytase is supplemented, but prececal P digestibility hardly exceeded 60%. The study confirms that pigs cannot benefit from a remarkable InsP6 degradation in the hindgut.


Asunto(s)
6-Fitasa/administración & dosificación , Aminoácidos/metabolismo , Brassica napus , Suplementos Dietéticos/análisis , Ácido Fítico/metabolismo , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Digestión , Heces/química , Tracto Gastrointestinal/metabolismo , Hidrólisis , Íleon/metabolismo , Masculino , Distribución Aleatoria , Glycine max , Zea mays
6.
Poult Sci ; 99(2): 981-991, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32036990

RESUMEN

This study was conducted to determine effects of high phytase use on growth performance, amino acid (AA) digestibility, intestinal phytate breakdown, and nutrient transporter expression in starter broiler chickens. Male Ross 308 chicks were allocated to 24 pens, at 15 birds/pen and assigned to one of 4 dietary treatments. Treatments were: a control diet (PCa+) that contained adequate levels of calcium (Ca) and phosphorus (P) for growing broiler chicks; a reduced Ca and P diet (PCa-:-1.5 g P/kg and -1.6 g Ca/kg), and 2 additional diets in which phytase was supplemented in the PCa- diet at 1,500 (PCa-Phy1500) and 3,000 (PCa-Phy3000) FTU/kg feed. A common starter diet was fed from day 1 to 8. From day 8 to 22, birds were fed the 4 experimental diets. On day 22, birds were killed for sample collection. From day 8 to 15, average daily gain and average daily feed intake were not different across treatments (P < 0.05) but gain-to-feed ratio (G:F) was reduced (P < 0.006) in the PCa- treatment compared with other treatments. There were no further performance differences, but a tendency of phytase treatments improving the overall G:F (P = 0.079; day 8-22). Up to both the duodenum-jejunum and ileum, phytate, P, and Ca disappearance were increased (P < 0.05) in the PCa-Phy1500 and PCa-Phy3000 treatments compared with PCa- treatment. Phytase dose dependently increased myoinositol (MI) concentration in the digesta from both the duodenum-jejunum and ileum (P < 0.001). The highest concentration of MI was found in the PCa-Phy3000 treatment. Plasma MI concentration was increased by phytase supplementation (P < 0.001). Prececal disappearance of Cys was lower (P < 0.05) in the PCa- treatment than in PCa1and PCa-Phy3000 treatment. Expression of MUC2 in the duodenum-jejunum was higher (P < 0.05) in the PCa-Phy3000 treatment than in other treatments. Phytase-induced hydrolysis of phytate led to elevated digesta and plasma MI concentrations and reduced digesta concentrations of phytate breakdown intermediates.


Asunto(s)
6-Fitasa/administración & dosificación , Pollos/metabolismo , Mucina 2/metabolismo , Ácido Fítico/metabolismo , Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calcio de la Dieta , Pollos/genética , Dieta/veterinaria , Expresión Génica/efectos de los fármacos , Masculino , Mucina 2/genética , Fósforo Dietético
7.
J Biol Chem ; 295(51): 17724-17737, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454010

RESUMEN

Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium longum/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Ligandos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Monoéster Fosfórico Hidrolasas/clasificación , Monoéster Fosfórico Hidrolasas/genética , Filogenia , Ácido Fítico/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
8.
J Anim Sci ; 97(9): 3907-3919, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31294448

RESUMEN

The objective of this present study was to determine the effects of phytase dosing on growth performance, mineral digestibility, phytate breakdown, and the level of glucose transporter type 4 (GLUT4) in muscle plasma membranes of weanling pigs. A total of 160 barrows were used in a randomized completely block design and assigned to 4 treatments for a 7-wk study. Depending on the feeding phase, diets differed in dietary calcium (Ca) and phosphorus (P) levels (positive control [PC]: 8 to 6.8g/kg Ca; 7.3 to 6.3 g/kg P; negative control [NC]: 5.5 to 5.2 g/kg Ca; 5.4 to 4.7 g/kg P). NC diets were supplemented with phytase at 0 (NC); 500 (NC + 500 FTU); or 2,000 FTU/kg (NC + 2,000 FTU) phytase units/kg. Blood was collected after fasting (day 48) or feeding (day 49) for measurement of plasma inositol concentrations. On day 49, 2 pigs per pen were euthanized, and duodenal and ileal digesta samples were collected to determine inositol phosphates (InsP6-2) concentrations. High phytase supplementation increased BW on days 21, 35, and 49 (P < 0.05). Over the entire feeding period, ADG, ADFI, and feed efficiency were increased by NC + 2,000 FTU compared with the other treatments (P < 0.05). Postprandial plasma inositol concentration was increased in NC + 2,000 (P < 0.01), but there was only a tendency (P = 0.06) of a higher fasting plasma inositol concentration in this group. Inositol concentrations in the portal vein plasma (day 49) were not different among treatments. Duodenal digesta InsP5 and InsP6 concentrations were similar in PC and NC, but higher in these 2 treatments (P < 0.05) than those supplemented with phytase. Phytase supplementation decreased InsP6-4, resulting in increased InsP3-2 and myo-inositol concentrations. Similar effects were found in ileal contents. Compared with NC, phytase supplementation resulted in greater cumulative InsP6-2 disappearance (93.6% vs. 72.8% vs. 25.0%, for NC + 2,000 FTU, NC + 500 FTU and NC, respectively, P < 0.01) till the distal ileum. Longissimus dorsi muscle plasma membrane GLUT4 concentration was increased by NC + 2,000 FTU (P < 0.01) compared with NC. In summary, high phytase supplementation increased growth performance of nursery pigs. The higher myo-inositol release from phytate could contribute to the increased expression of GLUT4 in muscle plasma membranes. Further investigation is needed to determine whether this is associated with enhanced cellular glucose uptake and utilization.


Asunto(s)
6-Fitasa/administración & dosificación , Suplementos Dietéticos/análisis , Transportador de Glucosa de Tipo 4/metabolismo , Inositol/sangre , Ácido Fítico/metabolismo , Porcinos/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Calcio de la Dieta/metabolismo , Membrana Celular/metabolismo , Dieta/veterinaria , Íleon/metabolismo , Fosfatos de Inositol/metabolismo , Masculino , Músculos/metabolismo , Fósforo Dietético/metabolismo , Porcinos/fisiología
9.
Anim Nutr ; 5(2): 196-201, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31193977

RESUMEN

This experiment was conducted to determine the effects of time and freezing temperature during sampling on gastric phytate (myo-inositol [MYO] hexakisphosphate [InsP6]), lower inositol phosphates (InsP2-5) and MYO concentrations in pigs fed diets containing different levels of phytase. Forty pigs were fed 1 of 4 wheat-barley diets on an ad libitum basis for 28 d. The diets comprised a nutritionally adequate positive control (PC), a similar diet but with Ca and P reduced by 1.6 and 1.24 g/kg, respectively (NC), and the NC supplemented with 500 (NC + 500) or 2,000 (NC + 2000) FTU phytase/kg. At the end of the experiment, chyme were collected from the stomach, thoroughly mixed and 2 subsamples (30 mL) were frozen immediately: one snap-frozen at -79 °C and the other at -20 °C. The remaining chyme were left to sit at room temperature (20 °C) and further subsamples were collected and frozen as above at 5, 10 and 15 min from the point of mixing. There were linear reductions in gastric InsP6 concentration over time during sampling (P < 0.001), irrespective of diet or freezing temperature. Moreover, InsP6 concentration was influenced by a diet × freezing temperature interaction (P < 0.05), with less InsP6 measured in chyme frozen at -20 °C than at -79 °C; however, this difference was greater in the control diets than the phytase supplemented diets. Freezing chyme at -79 °C recovered more ∑InsP2-5 + MYO than freezing at -20 °C in pigs fed phytase supplemented diets; however, this difference was not apparent in the diets without phytase (diet × freezing temperature, P < 0.01). It can be concluded that significant phytate hydrolysis occurs in the gastric chyme of pigs during sampling and processing, irrespective of supplementary phytase activity. Therefore, to minimise post-slaughter phytate degradation and changes in the gastric inositol phosphate profile, chyme should be snap-frozen immediately after collection.

10.
Poult Sci ; 98(11): 5562-5570, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189179

RESUMEN

Gnotobiotic broiler chickens were used to study interactive effects of supplemented phosphorus, calcium (PCa), and phytase (Phy) on myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) degradation and release of myo-inositol in the digestive tract. In 2 subsequent runs, the chickens were subjected to 1 of 4 dietary treatments with and without PCa and Phy supplementation. Sanitized eggs were hatched in 8 germfree isolators, and a minimum of 9 male Ross 308 chickens were placed in each pen (total 16 pens). Treatments implemented on day 10 included gamma-irradiated diets without (PCa-; 4.1 g P and 6.2 g Ca/kg DM) or with (PCa+; 6.9 g P and 10.4 g Ca/kg DM) monosodium phosphate and limestone supplementation and without (Phy-) or with (Phy+) 1,500 FTU Phy/kg feed in a factorial arrangement. On day 15, digesta was collected from different sections of the intestinal tract and analyzed for InsP isomers and myo-inositol. The isolators did not remain germfree, but analysis of contaminants and results of InsP degradation indicated no or minor effects of the identified contaminants. Prececal InsP6 disappearance was 42% with the PCa-Phy- treatment and 17% with PCa+Phy-. No InsP3-4 isomers were found in the digesta of the terminal ileum in PCa-Phy-. The concentration of myo-inositol in the ileal digesta from PCa-Phy- (6.1 µmol/g DM) was significantly higher than that from PCa+Phy- (1.7 µmol/g DM), suggesting rapid degradation of the lower InsP isomers by mucosal phosphatases and their inhibition by PCa. Phytase supplementation increased InsP6 disappearance and prevented inhibitory effects of PCa supplements (72% in PCa-Phy+ and 67% in PCa+Phy+). However, PCa supplementation reduced the degradation of lower InsP isomers mainly in the posterior intestinal sections in the presence of Phy, resulting in significantly lower myo-inositol concentrations. It is concluded that mucosa-derived phosphatases might significantly contribute to InsP6 degradation in broiler chickens. The potential of mucosa-derived phosphatases to degrade InsP6 and lower InsP is markedly reduced by dietary PCa supplementation.


Asunto(s)
6-Fitasa/metabolismo , Calcio de la Dieta/metabolismo , Pollos/metabolismo , Vida Libre de Gérmenes , Fósforo Dietético/metabolismo , Ácido Fítico/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Masculino
11.
Anim Microbiome ; 1(1): 5, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33499963

RESUMEN

BACKGROUND: There is good evidence for a substantial endogenous phytase activity originating from the epithelial tissue or the microbiota resident in the digestive tract of broiler chickens. However, ionophore coccidiostats, which are frequently used as feed additives in broiler diets to prevent coccidiosis, might affect the bacterial composition and the abundance of phytase producers in the gastrointestinal tract. The aim of the present study was to investigate whether supplementation of a frequently used mixture of the coccidiostats Narasin and Nicarbazin alone or together with a phytase affects microbiota composition of the digestive tract of broiler chickens, characteristics of phytate breakdown in crop and terminal ileum, and precaecal phosphorus and crude protein digestibility. RESULTS: Large differences in the microbial composition and diversity were detected between the treatments with and without coccidiostat supplementation. Disappearance of myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (InsP6) in the digestive tract, precaecal P digestibility, inorganic P in blood serum, and the concentration of inositol phosphate isomers in the crop and ileum digesta were significantly affected by phytase supplementation, but not by coccidiostat supplementation. Crude protein digestibility was increased by coccidiostat supplementation when more phosphate was available. Neither microbial abundance and diversity nor any other trait measured at the end of the experiment was affected by coccidiostat when it was only supplemented from day 1 to 10 of age. CONCLUSIONS: The coccidiostats used herein had large effects on overall microbiota composition of the digestive tract. The coccidiostats did not seem to affect endogenous or exogenous phytase activity up to the terminal ileum of broiler chickens. The effects of phytase on growth, phosphorus digestibility, and myo-inositol release were not altered by the presence of the coccidiostats. The effects of phytase and coccidiostats on nutrient digestibility can be of significant relevance for phosphorus and protein-reduced feeding concepts if confirmed in further experiments.

12.
Arch Anim Nutr ; 70(1): 57-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26631507

RESUMEN

The effect of diets differing in enzyme supplements, mineral phosphorus (P) and microwave wheat treatment on phytate hydrolysis and lower inositol phosphate isomers (InsPs) appearance in broiler crops was studied. The broilers (16- and 15-day-old) were assigned to 48 pens of 15 or 20 birds each (n = 8 pens per treatment) in Experiments 1 and 2, respectively. In Experiment 1, birds received a low-P wheat-soybean meal diet where the wheat was either microwave treated or not. These diets were offered without further supplementation or with added phytase (500 FTU/kg diet), alone or in combination with a xylanase (16,000 BXU/kg diet). In Experiment 2, two maize-soybean meal-based diets were fed, without or with monocalcium phosphate supplementation. Furthermore, these diets were offered without further supplementation or with phytase at 500 or 12,500 FTU/kg diet. On day 23 or 24 (Experiments 1 and 2, respectively), crop digesta were pooled per pen, freeze-dried and analysed for InsPs and the marker TiO2. Microwaving reduced the intrinsic phytase activity and InsP6 hydrolysis, but increased the concentration of Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5 in the digesta of crop (Experiment 1). Microwave treatment significantly interacted with enzyme supplementation for Ins(1,2,5,6)P4 concentration, indicating a synergistic effect of intrinsic and supplied phytase in the crop. Xylanase tended to support phytase hydrolysis in diets with microwave-treated wheat. Phytase addition increased InsP6 hydrolysis up to 79% (Experiment 2). Thus, wheat phytase activity can cause high InsP6 hydrolysis in the crop. Treatment differences in lower InsPs indicated that hydrolysis of the first InsP6 phosphate group is not the only step in the degradation cascade in the crop of broilers that is influenced by dietary factors.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Digestión/fisiología , Fosfatos de Inositol/metabolismo , 6-Fitasa/metabolismo , Alimentación Animal/análisis , Animales , Buche de las Aves/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Hidrólisis , Fósforo Dietético/metabolismo , Triticum/química
13.
J Nutr Sci ; 4: e1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26090091

RESUMEN

The objective was to characterise degradation of myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) and formation of inositol phosphate (InsP) isomers in different segments of the broiler digestive tract. Influence of an Aspergillus niger (PhyA) and two Escherichia coli-derived (PhyE1 and PhyE2) phytases was also investigated. A total of 600 16-d-old broilers were allocated to forty floor pens (ten pens per treatment). Low-P (5·2 g/kg DM) maize-soyabean meal-based diets were fed without (basal diet; BD) or with a phytase added. On day 25, digesta from different digestive tract segments were pooled per segment on a pen-basis, freeze-dried and analysed for P, InsP isomers and the marker TiO2. InsP6 degradation until the lower ileum (74 %) in BD-fed birds showed a high potential of broilers and their gut microbiota to hydrolyse InsP6 in low-P diets. Different InsP patterns in different gut segments suggested the involvement of phosphatases of different origin. Supplemented phytases increased InsP6 hydrolysis in the crop (P < 0·01) but not in the lower ileum. Measurements in the crop and proventriculus/gizzard confirmed published in vitro degradation pathways of 3- and 6-phytases for the first time. In the intestinal segments, specifically formed InsP4-5 isomers of supplemented phytases were still present, indicating further activity of these enzymes. Myo-inositol tetrakisphosphate (InsP4) accumulation differed between PhyE1 and PhyE2 compared with PhyA in the anterior segments of the gut (P < 0·01). Thus, the hydrolytic cleavage of the first phosphate group is not the only limiting step in phytate degradation in broilers.

14.
Poult Sci ; 94(5): 1018-29, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25810408

RESUMEN

Phytate breakdown in the digestive tract of broilers is affected by supplements of mineral phosphorus (P) and phytase with unknown interactions between the 2 factors. It was the objective to study phytate hydrolysis and the presence of inositol phosphate isomers (InsPs) as affected by supplements of mineral P and phytase in the small intestine of broilers. Fifteen-day old broilers were assigned to 48 pens of 20 broilers each (n = 8 pens/treatment). Two low-P corn-soybean meal-based diets without (BD-; 4.4 g P/kg dry matter) or with monocalcium phosphate (MCP; BD+; 5.2 g P/kg dry matter) were supplied without or with added phytase at 500 or 12,500 FTU/kg. On d 24, digesta from the duodenum/jejunum and lower ileum was pooled per segment on a by-pen basis, freeze-dried, and analyzed for P, InsPs, and the marker TiO2. Another 180 broilers (n = 6 pens/treatment, 10 birds each) were fed the 3 BD+ diets from d 1 to 21 to assess the influence of supplemented phytase on tibia mineralization and strength. Significant interactions between MCP and phytase supplements on myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) hydrolysis (duodenum/jejunum: P ≤ 0.001; ileum: P = 0.004) and level of specific lower InsPs were detected. Supplementation with 12,500 FTU/kg phytase resulted in 92% InsP6 hydrolysis and strong degradation of InsP5. This treatment resulted in higher P net absorption, affirmed by higher BW gain, tibia strength, and mineralization compared to treatments without or with 500 FTU/kg phytase (P ≤ 0.05). MCP supplementation reduced the degradation of InsP6 and specific lower InsPs in birds fed diets without or with 500 FTU/kg of phytase (P ≤ 0.05), but did not reduce InsP6 hydrolysis or degradation of InsP5 at the high phytase dose. Effects of added MCP on phytase efficacy depend on the dose of supplemented phytase. Differences in the concentrations of lower InsPs indicated that the initial step of InsP6 hydrolysis is not the only catabolic step that is influenced by MCP or phytase levels.


Asunto(s)
6-Fitasa/farmacología , Fosfatos de Calcio/farmacología , Pollos/metabolismo , Intestino Delgado/metabolismo , Fósforo/farmacología , Ácido Fítico/metabolismo , 6-Fitasa/administración & dosificación , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calcificación Fisiológica/efectos de los fármacos , Dieta/veterinaria , Suplementos Dietéticos , Interacciones Farmacológicas , Femenino , Hidrólisis , Fosfatos de Inositol/metabolismo , Masculino , Fósforo/administración & dosificación , Tibia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...