Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10627, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391525

RESUMEN

We present a low temperature scanning tunneling microscope investigation of a prochiral thiophene-based molecule that self-assembles forming islands with different domains on the Au(111) surface. In the domains, two different conformations of the single molecule are observed, depending on a slight rotation of two adjacent bromothiophene groups. Using voltage pulses from the tip, single molecules can be switched between the two conformations. The electronic states have been measured with scanning tunneling spectroscopy, showing that the electronic resonances are mainly localized at the same positions in both conformations. Density-functional theory calculations support the experimental results. Furthermore, we observe that on Ag(111), only one configuration is present and therefore the switching effect is suppressed.


Asunto(s)
Frío , Electrónica , Adsorción , Frecuencia Cardíaca , Tiofenos
2.
ACS Nano ; 17(3): 3128-3134, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36638056

RESUMEN

Depending on its adsorption conformation on the Au(111) surface, a zwitterionic single-molecule machine works in two different ways under bias voltage pulses. It is a unidirectional rotor while anchored on the surface. It is a fast-drivable molecule vehicle (nanocar) while physisorbed. By tuning the surface coverage, the conformation of the molecule can be selected to be either rotor or nanocar. The inelastic tunneling excitation producing the movement is investigated in the same experimental conditions for both the unidirectional rotation of the rotor and the directed movement of the nanocar.

3.
Nanoscale Adv ; 4(20): 4351-4357, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321147

RESUMEN

Dihydroazulene/vinylheptafulvene pairs are known as molecular dipole switches that undergo a ring-opening/-closure reaction by UV irradiation or thermal excitation. Herein, we show that the ring-closure reaction of a single vinylheptafulvene adsorbed on the Au(111) surface can be induced by voltage pulses from the tip of a scanning tunneling microscope. This cyclization is accompanied by the elimination of HCN, as confirmed by simulations. When inducing lateral movements by applying voltage pulses with the STM tip, we observe that the response of the single molecules changes with the ring closing reaction. This behaviour is discussed by comparing the dipole moment and the charge distribution of the open and closed forms on the surface.

4.
Chemistry ; 27(69): 17336-17340, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34652042

RESUMEN

The rapid development of on-surface synthesis provides a unique approach toward the formation of carbon-based nanostructures with designed properties. Herein, we present the on-surface formation of CN-substituted phenylene vinylene chains on the Au(111) surface, thermally induced by annealing the substrate stepwise at temperatures between 220 °C and 240 °C. The reaction is investigated by scanning tunneling microscopy and density functional theory. Supported by the calculated reaction pathway, we assign the observed chain formation to a Knoevenagel condensation between an aldehyde and a methylene nitrile substituent.

5.
Nanoscale ; 13(38): 16077-16083, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34549747

RESUMEN

We present the chemical anchoring of a DMBI-P molecule-rotor to the Au(111) surface after a dissociation reaction. At the temperature of 5 K, the anchored rotor shows a sequential unidirectional rotational motion through six defined stations induced by tunneling electrons. A typical voltage pulse of 400 mV applied on a specific location of the molecule causes a unidirectional rotation of 60° with a probability higher than 95%. When the temperature of the substrate increases above 20 K, the anchoring is maintained and the rotation stops being unidirectional and randomly explores the same six stations. Density functional theory simulations confirm the anchoring reaction. Experimentally, the rotation shows a clear threshold at the onset of the C-H stretch manifold, showing that the molecule is first vibrationally excited and later it decays into the rotational degrees of freedom.

6.
Sci Rep ; 11(1): 14649, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282159

RESUMEN

Due to the low corrugation of the Au(111) surface, 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene (PEEB) molecules can form quasi interlocked lateral patterns, which are observed in scanning tunneling microscopy experiments at low temperatures. We demonstrate a multi-dimensional clustering approach to quantify the anisotropic pair-wise interaction of molecules and explain these patterns. We perform high-throughput calculations to evaluate an energy function, which incorporates the adsorption energy of single PEEB molecules on the metal surface and the intermolecular interaction energy of a pair of PEEB molecules. The analysis of the energy function reveals, that, depending on coverage density, specific types of pattern are preferred which can potentially be exploited to form one-dimensional molecular wires on Au(111).

7.
Nanoscale ; 12(48): 24471-24476, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33305772

RESUMEN

Among the different mechanisms that can be used to drive a molecule on a surface by the tip of a scanning tunneling microscope at low temperature, we used voltage pulses to move azulene-based single molecules and nanostructures on Au(111). Upon evaporation, the molecules partially cleave and form metallo-organic dimers while single molecules are very scarce, as confirmed by simulations. By applying voltage pulses to the different structures under similar conditions, we observe that only one type of dimer can be controllably driven on the surface, which has the lowest dipole moment of all investigated structures. Experiments under different bias and tip height conditions reveal that the electric field is the main driving force of the directed motion. We discuss the different observed structures and their movement properties with respect to their dipole moment and charge distribution on the surface.

8.
J Phys Chem Lett ; 11(16): 6892-6899, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32787202

RESUMEN

The realization of a train of molecule-gears working under the tip of a scanning tunneling microscope (STM) requires a stable anchor of each molecule to the metal surface. Such an anchor can be promoted by a radical state of the molecule induced by a dissociation reaction. Our results, rationalized by density functional theory calculations, reveal that such an open radical state at the core of star-shaped pentaphenylcyclopentadiene (PPCP) favors anchoring. Furthermore, to allow the transmission of motion by STM manipulation, the molecule-gears should be equipped with specific groups facilitating the tip-molecule interactions. In our case, a tert-butyl group positioned at one tooth end of the gear benefits both the tip-induced manipulation and the monitoring of rotation. With this optimized molecule, we achieve reproducible and stepwise rotations of the single gears and transmit rotations for up to three interlocked units.

9.
ACS Nano ; 14(1): 1011-1017, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31829618

RESUMEN

The acene series represents a model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport. Here, we present the on-surface generation of the longest acene obtained so far: dodecacene. Scanning tunneling spectroscopy gives access to the energy position and spatial distribution of its electronic states on the Au(111) surface. We observe that, after a progressive closing of the gap and a stabilization to about 1 eV at the length of decacene and undecacene, the energy gap of dodecacene unexpectedly increases to 1.4 eV. Considering the acene series as an exemplary general case, we discuss the evolution with length of the single tunneling resonances in comparison with ionization energy, electronic affinity, and optical gap.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA