Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Total Environ ; 706: 135695, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31940723

RESUMEN

Silver nanoparticles (AgNPs) are present in a wide field of applications and consumer products and are likely to be released into the environment, mainly via urban and industrial sewage due to their extensive use. Even though AgNPs are mostly retained within the sludge of wastewater treatment plants (WWTPs), a small amount of mainly sulfidized particles still enters the aquatic environment, where they can be taken up by various aquatic organisms and transferred along the food chain. In this study, uptake and bioavailability of Ag from AgNPs following aqueous and dietary exposure were investigated in the rainbow trout Oncorhynchus mykiss. AgNPs in the effluent of model WWTPs and in tap water were used to perform aqueous exposure studies. No significant Ag uptake into the gills and carcass of the analyzed fish could be found for wastewater-borne AgNPs. However, when added to tap water at a concentration of 12.4 µg L-1, a maximum total Ag tissue concentrations of around 100 µg kg-1 and 50 µg kg-1 in gills and carcass were measured, respectively. For the dietary exposure studies, freshwater zooplankton was exposed to AgNPs, and used for the preparation of food pellets with a total Ag concentration of 121.5 µg kg-1. During the feeding study with rainbow trout significant total Ag concentrations up to 34.3 µg kg-1 could be found in the digestive tract. However, only a limited transfer of Ag through the intestinal walls into the carcass could be detected. AgNPs in plankton and WWTP effluent were characterized by transmission electron microscopy (TEM) in combination with energy dispersive X-ray spectroscopy (EDX) and found to be sulfidized. This transformation most presumably has led to their limited bioavailability for fish. The results emphasize the importance of realistic test conditions for the risk assessment of AgNPs by the use of environmental matrices.


Asunto(s)
Nanopartículas del Metal/análisis , Oncorhynchus mykiss/metabolismo , Plata/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Disponibilidad Biológica , Monitoreo del Ambiente , Plancton , Plata/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Eur ; 30(1): 7, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29479507

RESUMEN

BACKGROUND: Increasing amounts of engineered nanoparticles (NPs) in wastewater can reach the aquatic environment by passing through the sewage treatment plant (STP). NPs can induce ecotoxicological effects due to their specific chemical properties. However, their bioavailability and toxicity are potentially influenced by transformation processes caused by substances present in the STP, e.g., humic acids or sulfides. Due to the lack of a test system allowing to test NPs under realistic environmental conditions, we coupled two existing test systems, the activated sludge simulation test (OECD TG 303A 2001) and the chronic exposure test with the freshwater amphipod Hyalella azteca (Environment Canada 2013), to gain a test scenario that allows to consider the altered behavior and fate of NPs induced by the STP process. This should improve the environmental realism of the chronic exposure test with Hyalella. In the first study, we tested the STP effluent containing AgNPs. In the second and third study, tap water and control STP effluent were spiked with AgNPs and used as test media. RESULTS: The chronic exposure studies with the freshwater amphipod H. azteca showed that the investigated AgNPs lose most of their toxicity while passing through the STP. Over all studies with total Ag concentrations ranging from 0.85 to 68.70 µg/L, significant effects of the AgNPs were only observed in the survival of test animals exposed to tap water containing the highest Ag concentration (62.59 µg/L). Accumulation of silver in the body of test animals was clearly dependent on the pretreatment of the AgNPs. Silver ions (Ag+) released from AgNPs are supposed to be the major pathway leading to body burden following exposure to test media containing AgNPs. CONCLUSION: The coupled test system is suitable for testing substances that can reach the environment via the STP effluent. The investigated AgNPs lose most of their toxicity while passing through the STP. Accumulation of silver in the animals exposed to the different treatments was apparent, whereby silver ions (Ag+) released from AgNPs were supposed to be the major pathway leading to body burden.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...