Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1342638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576476

RESUMEN

Bupleurum marginatum Wall.ex DC [Apiaceae] (BM)is widely grown in southwestern China, and the whole plant is used as Traditional Chinese Medicine (TCM). Polysaccharides are main natural products in lots of TCM and have been studied for their effects of reducing oxidative stress, anti-inflammation and immune regulation. Herein, we investigated the extraction techniques of Bupleurum marginatum Wall.ex DC polysaccharides (BMP), the identification of their key components, and their ability to inhibit liver fibrosis in both cellular and animal models. Component identification indicated that monosaccharides in BMP mainly consisted of glucose, galactose, mannose, rhamnose, arabinose, and xylose. In vivo analysis revealed that BMP provided significant protective effects on N-Nitroso dimethylamine (NDMA)-induced liver fibrosis rats through reducing hepatomegaly, reducing tissue inflammation, and reducing collagen deposition. BMP also improved the hepatobiliary system and liver metabolism in accord to reduce the serum levels of ALT, AST, ALP, r-GT, and TBIL. In addition, BMP could reduce the level of inflammation and fibrosis through inhibition of IL-1ß and TGF-ß1. Cellular studies showed that the BMP could provide therapeutic effects on lipopolysaccharide (LPS)-induced cellular fibrosis model, and could reduce the level of inflammation and fibrosis by decreasing the level of TGF-ß1, IL-1ß, and TNF-α. Our study demonstrated that BMP may provide a new therapy strategy of liver injury and liver fibrosis.

2.
Food Sci Nutr ; 11(7): 3655-3674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37457175

RESUMEN

Nelumbo nucifera (lotus plant) is an important member of the Nelumbonaceae family. This review summarizes the studies conducted on it since the past 15 years to provide an understanding on future areas of focus. Different parts of this plant, that is, leaves, roots, and seeds, have been used as food and for the treatment of various diseases. Polysaccharides have been extracted from different parts using different methods. The manuscript reviews the methods of extraction of polysaccharides used for leaves, roots, and seeds, along with their yield. Some methods can provide better yield while some provide better biological activity with low yield. The composition and structure of extracted polysaccharides have been determined in some studies. Although monosaccharide composition has been determined in various studies, too little information about the structure of polysaccharides from N. nucifera is available in the current literature. Different useful biological activities have been explored using in vivo and in vitro methods, which include antioxidant, antidiabetic, antitumor, anti-osteoporotic, immunomodulatory, and prebiotic activities. Antitumor activity from polysaccharides of lotus leaves is yet to be explored, besides lotus root has been underexplored as compared to other parts (leaves and seeds) according to our literature survey. Studies dedicated to the successful use of combination of extraction methods can be conducted in future. The plant provides a therapeutic as well as nutraceutical potential; however, antimicrobial activity and synergistic relationships of polysaccharides from different parts of the plant need further exploration.

3.
Biomed Res Int ; 2022: 4237633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36317111

RESUMEN

Objective: The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Methods: GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of their differential expression on cancer progression. Results: We identified the top 10 hub genes through CytoHubba plugin. These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biología Computacional/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Perfilación de la Expresión Génica , Pronóstico , Proteínas de Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/genética
5.
Virus Res ; 319: 198873, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-35868353

RESUMEN

Klebsiella pneumoniae, a multidrug resistant bacterium that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. In this study, a novel bacteriophage IME184, was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization exhibited this phage belongs to the Molineuxvirinae genus, Autographiviridae family. Phage IME184 possessed a double-stranded DNA genome composed of 44,598 bp with a GC content of 50.3%. The phage genome encodes 57 open reading frames, out of 26 are hypothetical proteins while 31 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME184 has 94% similarity with genomic sequence of Klebsiella phage K1-ULIP33 (MK380014.1). Multiplicity of infection, one step growth curve and host range of phage were also measured. According to findings, Phage IME184 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.


Asunto(s)
Bacteriófagos , Caudovirales , Antibacterianos , Caudovirales/genética , Genoma Viral , Genómica , Klebsiella pneumoniae/genética , Filogenia
6.
PLoS One ; 17(6): e0268078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709191

RESUMEN

Hearing impairment (HI) is a heterogeneous condition that affects many individuals globally with different age groups. HI is a genetically and phenotypically heterogeneous disorder. Over the last several years, many genes/loci causing rare autosomal recessive and dominant forms of hearing impairments have been identified, involved in various aspects of ear development. In the current study, two affected individuals of a consanguineous family exhibiting autosomal recessive nonsyndromic hearing impairment (AR-NSHI) were clinically and genetically characterized. The single affected individual (IV-2) of the family was subjected to whole-exome sequencing (WES) accompanied by traditional Sanger sequencing. Clinical examinations using air conduction audiograms of both the affected individuals showed profound hearing loss across all frequencies. WES revealed a homozygous missense variant (c.44G>C) in the SIX5 gene located on chromosome 19q13.32. We report the first case of autosomal recessive NSHI due to a biallelic missense variant in the SIX5 gene. This report further supports the evidence that the SIX5 variant might cause profound HI and supports its vital role in auditory function. Identification of novel candidate genes might help in application of future gene therapy strategies that may be implemented for NSHI, such as gene replacement using cDNA, gene silencing using RNA interference, and gene editing using the CRISPR/Cas9 system.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Sordera/genética , Genes Recesivos , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Homocigoto , Humanos , Mutación , Mutación Missense , Linaje
7.
Sci Rep ; 12(1): 8160, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581215

RESUMEN

Mahonia bealei is one of the important members of the genus Mahonia and Traditional Chinese Medicine (TCM). Several compounds isolated from this plant have exhibited useful biological activities. Polysaccharides, an important biomacromolecule have been underexplored in case of M. bealei. In this study, hot water extraction and ethanol precipitation were used for the extraction of polysaccharides from the stem of M. bealei, and then extract was purified using ultrafiltration membrane at 50,000 Da cut off value. Characterization of the purified M. bealei polysaccharide (MBP) was performed using Fourier Transform Infrared Spectroscopy (FT-IR), along with Scanning Electron Microscopy (SEM), X-ray crystallography XRD analysis and Thermal gravimetric analysis (TGA). The purified polysaccharide MBP was tested for antioxidant potential by determining its reducing power, besides determining the DPPH, ABTS, superoxide radical, and hydroxyl radical scavenging along with ferrous ion chelating activities. An increased antioxidant activity of the polysaccharide was reported with increase in concentration (0.5 to 5 mg/ml) for all the parameters. Antimicrobial potential was determined against gram positive and gram-negative bacteria. 20 µg/ml MBP was found appropriate with 12 h incubation period against Escherichia coli and Bacillus subtilis bacteria. We conclude that polysaccharides from M. bealei possess potential ability of biological importance; however, more studies are required for elucidation of their structure and useful activities.


Asunto(s)
Berberis , Mahonia , Antioxidantes/química , Depuradores de Radicales Libres , Mahonia/química , Polisacáridos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Agua
8.
Biomed Pharmacother ; 143: 112164, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649335

RESUMEN

Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.


Asunto(s)
Suplementos Dietéticos , Fitoquímicos/uso terapéutico , Resveratrol/uso terapéutico , Animales , Suplementos Dietéticos/efectos adversos , Humanos , Seguridad del Paciente , Fitoquímicos/efectos adversos , Fitoquímicos/farmacocinética , Resveratrol/efectos adversos , Resveratrol/farmacocinética , Medición de Riesgo
9.
J Genet Eng Biotechnol ; 19(1): 164, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34677734

RESUMEN

BACKGROUND: Serine/threonine kinase 3 (AKT3) is a protein-coding gene that is associated with several cattle immune diseases including different tumors and cancers. The objective of this study was to investigate the differences in structures and functions of AKT3 of cow and buffalo cattle. METHODS: The sequence differences of gene-coding sequence (CDS) and core promoter region of AKT3 in cow and buffalo were analyzed by using bioinformatics tools and PCR sequencing. Also, the functional analysis of promoter regulating gene expression by RT-PCR was performed using 500 Holstein cows and buffalos. And, evaluation of AKT3 inflammatory response to the lipopolysaccharide (LPS)-induced mastitis was performed between both species. RESULTS: The results revealed the variation in 6 exons out of 13 exons of the two species of CDS. Also, 4 different regions in 3-kb promoters of the AKT3 gene were significantly different between cow and buffalo species, in which cow's AKT3 promoter sequence region was started from - 371 to - 1247, while in buffalo, the sequence was started from - 371 to - 969 of the promoter crucial region. Thus, the promoter was overexpressed in cows compared to buffaloes. As a result, significant differences (P < 0.05) between the two species in the AKT3 gene expression level related to the LPS stimulation in their mammary epithelial cell line. CONCLUSIONS: This study emphasized the great importance of the structural differences of AKT3 between the animal species on their different responses against immune diseases like mastitis.

10.
Sci Rep ; 11(1): 14759, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285274

RESUMEN

This study was designed to preparecarboxyl-functionalized poly (N-isopropylacrylamide) PNIPAM microgels having excellent catalytic properties.Recently, researchers are trying to fabricate cost effective and efficient hybrid catalytic materials for the synthesis of nitrogenous compounds along with enhanced optical properties. For the same motive, synthesis of carboxyl-functionalized PNIPAM microgels was performed by using polymerization of soap-free emulsion of N-isopropyl acrylamide, which is NIPAM along with acrylic acid (AA). The thiol group was introduced through the imide bond mediated by carbodiimide, between carboxyl-functionalized microgels through carboxyl group and aminoethanethiol (AET). Copper, Palladium and Cu/Pd nanoparticles were incorporated successfully into thiol-functionalized PNIPAM microgels through metals thiol linkage. The synthesized microgels and hybrid encompassing metallic nanoparticles were characterized in detail by using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron (XPS) and Fourier transformed infrared spectroscopy for structural interpretation. The thermal properties of the pure and hybrid microgels were inspected by TG analysis. The prepared nanocomposites PNIPAM-Cu, PNIPAM-Pd and PNIPAM-Cu/Pd exhibited decent catalytic properties for the degradation of 4-Nitrophenol and methylene blue, but the bimetallic Cu/Pd have remarkable catalytic properties. The catalytic reaction followed pseudo-first-order reaction with rate constants 0.223 min-1, 0.173 min-1 for 4-Nitrophenol and methylene blue in that order. In this study,we were able to establish that Cu/Pd hybrid is an efficient catalyst for 4-Nitrophenol and methylene blue as compared to its atomic analogue.

11.
PLoS One ; 16(2): e0247249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33635927

RESUMEN

DC-SIGN receptor articulated by macrophages and dendritic cells is encoded by CD209 gene and plays a role to activate and proliferate the T-lymphocytes in response of virus attack. The dysfunctional activity of DC-SIGN receptor because of missense SNPs can lead to cause dengue haemorrhage fever, HIV-1 infection etc. Out of 11 transcripts of CD209, all missense SNPs of canonical transcript were retrieved from Ensembl database and evaluated by their deleteriousness by using Polyphen-2, PMut, SIFT, MutPred, PROVEAN and PhD-SNP together with stimulation of its complete 3D structure. 10 nsSNPs were chosen depending on both the significance value of nsSNP and their prediction among SNPs evaluating servers which are based on different algorithms. Moreover, the position and native role of 10 nsSNPs in wild 3D model has been described which assist to acknowledge their importance. This study urges the researcher's community to experimentally validate these SNPs and their association in causing the diseases like dengue fever, Tuberculosis etc.


Asunto(s)
Moléculas de Adhesión Celular/genética , Biología Computacional/métodos , Lectinas Tipo C/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Moléculas de Adhesión Celular/química , Simulación por Computador , Predisposición Genética a la Enfermedad , Humanos , Enlace de Hidrógeno , Lectinas Tipo C/química , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica , Receptores de Superficie Celular/química , Programas Informáticos
12.
Comput Med Imaging Graph ; 88: 101843, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33445062

RESUMEN

As an analytic tool in medicine, deep learning has gained great attention and opened new ways for disease diagnosis. Recent studies validate the effectiveness of deep learning algorithms for binary classification of skin lesions (i.e., melanomas and nevi classes) with dermoscopic images. Nonetheless, those binary classification methods cannot be applied to the general clinical situation of skin cancer screening in which multi-class classification must be taken into account. The main objective of this research is to develop, implement, and calibrate an advanced deep learning model in the context of automated multi-class classification of skin lesions. The proposed Deep Convolutional Neural Network (DCNN) model is carefully designed with several layers, and multiple filter sizes, but fewer filters and parameters to improve efficacy and performance. Dermoscopic images are acquired from the International Skin Imaging Collaboration databases (ISIC-17, ISIC-18, and ISIC-19) for experiments. The experimental results of the proposed DCNN approach are presented in terms of precision, sensitivity, specificity, and other metrics. Specifically, it attains 94 % precision, 93 % sensitivity, and 91 % specificity in ISIC-17. It is demonstrated by the experimental results that this proposed DCNN approach outperforms state-of-the-art algorithms, exhibiting 0.964 area under the receiver operating characteristics (AUROC) in ISIC-17 for the classification of skin lesions and can be used to assist dermatologists in classifying skin lesions. As a result, this proposed approach provides a novel and feasible way for automating and expediting the skin lesion classification task as well as saving effort, time, and human life.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Dermoscopía , Humanos , Melanoma/diagnóstico por imagen , Redes Neurales de la Computación , Neoplasias Cutáneas/diagnóstico por imagen
13.
Carbohydr Polym ; 252: 117113, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33183585

RESUMEN

Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.


Asunto(s)
Artemisia/química , Aditivos Alimentarios/química , Extractos Vegetales/química , Polisacáridos , Semillas/química , Antineoplásicos/química , Antioxidantes/química , Embalaje de Alimentos , Hipoglucemiantes/química , Factores Inmunológicos/química , Estructura Molecular , Polisacáridos/química , Polisacáridos/aislamiento & purificación
14.
Int J Biol Macromol ; 156: 420-429, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289423

RESUMEN

Cyclocarya paliurus is essential and only living specie of the genus Cyclocarya Iljinskaja. The leaves of this plant have been extensively used as food in the form of tea and green vegetable. Many compounds have been isolated from this plant, and their useful aspects explored, including the polysaccharides. Studies conducted on leaves show that different methods of extraction have been used, as well as a combination of different techniques that have been applied to isolate polysaccharides from the leaves. Their structure has been elucidated because the activity of polysaccharides mainly depends upon their composition. It has been reported that different activities exhibited by the isolated crude, purified as well as modified polysaccharides include, anticancer, anti-inflammatory, antioxidant, antimicrobial, anti-hyperlipidemic and anti-diabetic activities. In some studies, a comparison of crude extract, as well as purified polysaccharide, has been performed. In this review, we have summarized all the available literature available on the methods of extraction, structure, and biological activities of polysaccharides from the leaves of C. paliurus and indicated the potential research areas that should be focused on future studies. We believe that this review will provide an up to date knowledge regarding polysaccharides of C. paliurus for the researchers.


Asunto(s)
Juglandaceae/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Fraccionamiento Químico , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Microondas , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Ondas Ultrasónicas
15.
Int J Biol Macromol ; 129: 827-843, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30708011

RESUMEN

The frequently studied polysaccharide, chitosan oligosaccharide/chitooligosaccharide (COS) is the major degradation product of chitosan/chitin via chemical hydrolysis or enzymatic degradation involving deacetylation and depolymerization processes. Innumerable studies have revealed in the recent decade that COS has various promising biomedical implications in the past analysis, current developments and potential applications in a biomedical, pharmaceutical and agricultural sector. Innovations into COS derivatization has broadened its application in cosmeceutical and nutraceutical productions as well as in water treatment and environmental safety. In relation to its parent biomaterials and other available polysaccharides, COS has low molecular weight (Mw), higher degree of deacetylation (DD), higher degree of polymerization (DP), less viscous and complete water solubility, which endowed it with significant biological properties like antimicrobial, antioxidant, anti-inflammatory and antihypertensive, as well as drug/DNA delivery ability. In addition, it is also revealed to exhibit antidiabetic, anti-obesity, anti-HIV-1, anti-Alzheimer's disease, hypocholesterolemic, calcium absorption and hemostatic effects. Furthermore, COS is shown to have higher cellular transduction and completely absorbable via intestinal epithelium due to its cationic sphere exposed on the more exposed shorter N-glucosamine (N-Glc) units. This paper narrates the recent developments in COS biomedical applications while paying considerable attention to its physicochemical properties and its chemical composition. Its pharmacokinetic aspects are also briefly discussed while highlighting potential overdose or lethal dosing. In addition, due to its multiple NGlc unit composition and vulnerability to degradation, its safety is given significant attention. Finally, a suggestion is made for extensive study on COS anti-HIV effects with well-refined batches.


Asunto(s)
Quitosano/química , Quitosano/farmacología , Oligosacáridos/química , Oligosacáridos/farmacología , Animales , Materiales Biocompatibles/química , Fraccionamiento Químico , Fenómenos Químicos , Quitina/química , Quitosano/aislamiento & purificación , Quitosano/farmacocinética , Humanos , Oligosacáridos/aislamiento & purificación , Oligosacáridos/farmacocinética , Relación Estructura-Actividad
16.
Environ Sci Pollut Res Int ; 25(35): 35027-35033, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30368697

RESUMEN

Mojave yucca (Yucca schidigera) is widely grown in the deserts. This herb is commercially used because it is rich in saponins and phenolic compounds with antioxidant effect. Y. schidigera or its derivatives are included as nontoxic food supplements, in cosmetics, and in the pharmaceutical industry. Saponins originated from Y. schidigera have anti-inflammatory, antioxidant, immunostimulatory, growth promoter, hypocholesterolemic, and hypoglycemic effects. To date, the key role of Y. schidigera or its products in animal nutrition is to reduce the ammonia content in the atmosphere and fecal odor in poultry excreta. Mitigating ammonia by using this plant could be achieved by the modification of gut microbiota, enhancement in digestion, and absorption of nutrients, leading to a better growth and production performance of animals and poultry. Various methods were applied to mitigate the emission of odor from the litter by different strategies including biofilters, litter treatments, air scrubbers, neutralizing agents, windbreak walls, etc., but these techniques are expensive. This article provides a new insight to scientists and poultry breeders to use Y. schidigera plant or its products as inexpensive and safe sources of a feed supplement to overcome the ammonia and fecal odor problems, as well as reduce environmental pollution in poultry houses.


Asunto(s)
Amoníaco/química , Crianza de Animales Domésticos/métodos , Suplementos Dietéticos , Extractos Vegetales , Aves de Corral , Saponinas , Yucca/química , Amoníaco/análisis , Animales , Estiércol , Odorantes , Fenoles
17.
Biomed Pharmacother ; 100: 521-531, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29482046

RESUMEN

Medicinal plants are essential parts of traditional medicine due to their phytochemical constituents having pharmacological values and therapeutic applications. Black tea have thousands of various biological compounds such as flavonoids (Thearubigins (TRs) and theaflavins (TFs) and catechins), amino acids (L.theanine), vitamins (A, C, K), phenolic acids (caffeic acid (CA), gallic acid (GA), chlorogenic acids (CGA) and cauramic acid), lipids, proteins, volatile compounds carbohydrates, ß-carotene and fluoride that illustrated many promising pharmacological effects regarded as growth promoter, cardioprotector, potent cholesterol-lowering effect, antioxidant and antimicrobial, etc inhuman. Although there is an exponential growth in molecular evidence of cholesterol-lowering and antioxidant effect in human, there is still a lack of information of the pharmacological effects of black tea. To fill this information gap, therefore, this review article underscores broadening the new insight pertaining to black tea that could be used as safe food additive. This article also illuminates the interesting role of black tea as an herbal medicine that is the future demand to get rid of synthetic health promoters in the human health practice. Moreover, this information would be useful in terms of the low-cost practice of natural medicines with no residual effects, and a natural protection of the human being. In addition, further studies at a molecular level are needed to reveal its mechanism of action particularly for the hypocholesterolemic effect of black tea to overcome the heart-related diseases, fewer side effects and being a natural safeguard of human health.


Asunto(s)
Camellia sinensis , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Plantas Medicinales , , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Humanos , Fitoterapia/tendencias , Extractos Vegetales/aislamiento & purificación
18.
Front Genet ; 9: 727, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30733730

RESUMEN

Background: Limb-girdle muscular dystrophy (LGMD) is an increasingly heterogeneous category of inherited muscle diseases, mainly affecting the muscles of shoulder areas and the hip, segregating in both autosomal recessive and dominant manner. To-date, thirty-one loci have been identified for LGMD including seven autosomal dominant (LGMD type 1) and twenty four autosomal recessive (LGMD type 2) inherited loci. Methodology/Laboratory Examination: The present report describes a consanguineous family segregating LGMD2F in an autosomal recessive pattern. The affected individual is an 11-year-old boy having two brothers and a sister. Direct targeted next generation sequencing was performed for the single affected individual (VI-1) followed by Sanger sequencing. Results: Targeted next generation sequencing revealed a novel homozygous nonsense mutation (c.289C>T; p.Arg97∗) in the exon 3 of the delta-sarcoglycan (SGCD) gene, that introduces a premature stop codon (TCA), resulting in a nonsense mediated decay or a truncated protein product. Discussion and Conclusion: This is the first report of LGMD2F caused by an SGCD variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SGCD in causing LGMD2F and might help in genetic counseling, which is more important to deliver the risk of carrier or affected in the future pregnancies.

19.
Biomed Pharmacother ; 95: 1260-1275, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28938517

RESUMEN

Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits.


Asunto(s)
Camellia sinensis/química , Glutamatos/farmacología , Humanos , Modelos Biológicos , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...