Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Comput Biol Med ; 178: 108744, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889631

RESUMEN

Cancer alters the structural integrity and morphology of cells. Consequently, the cell function is overshadowed. In this study, the micropipette aspiration process is computationally modeled to predict the mechanical behavior of the colorectal cancer cells. The intended cancer cells are modeled as an incompressible Neo-Hookean visco-hyperelastic material. Also, the micropipette is assumed to be rigid with no deformation. The proposed model is validated with an in-vitro study. To capture the equilibrium and time-dependent behaviors of cells, ramp, and creep tests are respectively performed using the finite element method. Through the simulations, the effects of the micropipette geometry and the aspiration pressure on the colorectal cancer cell lines are investigated. Our findings indicate that, as the inner radius of the micropipette increases, despite the increase in deformation rate and aspirated length, the time to reach the equilibrium state increases. Nevertheless, it is obvious that increasing the tip curvature radius has a small effect on the change of the aspirated length. But, due to the decrease in the stress concentration, it drastically reduces the equilibrium time and increases the deformation rate significantly. Interestingly, our results demonstrate that increasing the aspiration pressure somehow causes the cell stiffening, thereby reducing the upward trend of deformation rate, equilibrium time, and aspirated length. Our findings provide valuable insights for researchers in cell therapy and cancer treatment and can aid in developing more precise microfluidic.

2.
Cardiovasc Eng ; 7(4): 140-55, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18026835

RESUMEN

A set of multiscale simulations has been created to examine the dynamic behavior of the human aortic valve (AV) at the cell, tissue, and organ length scales. Each model is fully three-dimensional and includes appropriate nonlinear, anisotropic material models. The organ-scale model is a dynamic fluid-structure interaction that predicts the motion of the blood, cusps, and aortic root throughout the full cycle of opening and closing. The tissue-scale model simulates the behavior of the AV cusp tissue including the sub-millimeter features of multiple layers and undulated geometry. The cell-scale model predicts cellular deformations of individual cells within the cusps. Each simulation is verified against experimental data. The three simulations are linked: deformations from the organ-scale model are applied as boundary conditions to the tissue-scale model, and the same is done between the tissue and cell scales. This set of simulations is a major advance in the study of the AV as it allows analysis of transient, three-dimensional behavior of the AV over the range of length scales from cell to organ.


Asunto(s)
Válvula Aórtica/fisiología , Válvula Aórtica/anatomía & histología , Simulación por Computador , Humanos , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...