Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 27(9): 12939-12944, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052826

RESUMEN

A simple and very fast method for reconstruction of temporal structure of linearly polarized FEL pulses from the THz streaking spectra of photoelectrons is suggested. The method is based on a quantum mechanical approach within the strong-field approximation. The method is suitable for online retrieval of the temporal characteristics of the FEL pulses. It can be applied for any photon frequency in a broad range of FEL pulse duration with a proper selection of the streaking field. To enhance its accuracy, it is suggested to simultaneously analyze the streaking spectra for several emission angles.

2.
Phys Rev Lett ; 118(1): 013002, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28106422

RESUMEN

Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He^{+}(3p) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

3.
Rev Sci Instrum ; 87(8): 083113, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587106

RESUMEN

A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

4.
Artículo en Inglés | MEDLINE | ID: mdl-26172741

RESUMEN

X-ray free-electron lasers (XFELs) may allow us to employ the single-particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow us to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here we study the effect of electronic damage on the SPI at pulse durations from 0.1 to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than 10(13)-10(15) photons/µm(2) (depending on the photon energy and pulse duration) the diffracted signal saturates and does not increase further. A significant gain in the signal is obtained by reducing the pulse duration from 10 to 1 fs. Pulses below a duration of 1 fs do not give a significant gain in the scattering signal in comparison with 1-fs pulses. We also study the limits imposed on SPI by Compton scattering.

5.
Nat Commun ; 5: 3648, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24736496

RESUMEN

Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051911, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23214818

RESUMEN

In single-particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources.


Asunto(s)
Biopolímeros/química , Biopolímeros/efectos de la radiación , Modelos Biológicos , Modelos Químicos , Rayos X , Simulación por Computador , Dosis de Radiación
7.
Phys Rev Lett ; 108(6): 063007, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401068

RESUMEN

Two-color (x-ray+infrared) electron spectroscopy is used for investigating laser-assisted KLL Auger decay following 1s photoionization of atomic Ne with few-femtosecond x-ray pulses from the Linac Coherent Light Source. In an angle-resolved experiment, the overall width of the laser-modified Auger-electron spectrum and its structure change significantly as a function of the emission angle. The spectra are characterized by a strong intensity variation of the sidebands revealing a gross structure. This variation is caused, as predicted by theory, by the interference of electrons emitted at different times within the duration of one optical cycle of the infrared dressing laser, which almost coincides with the lifetime of the Ne 1s vacancy.

8.
Phys Rev Lett ; 107(25): 253002, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22243071

RESUMEN

A remarkable effect of circular dichroism, i.e., a difference in photoelectron spectra produced by right and left circularly polarized light in two-color multiphoton ionization of atoms, is predicted for the case when the atom is ionized by an extreme ultraviolet or x-ray femtosecond pulse in the field of a strong infrared laser pulse, both pulses being circularly polarized. We show that the sidebands formed in the spectra exhibit different circular dichroism often of different signs both in angle-resolved and angle-integrated experimental conditions. The effect can be used for detecting and measuring circular polarization of x rays in a spectral range where other methods are not effective.

9.
Nature ; 446(7136): 627-32, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17410167

RESUMEN

Atoms exposed to intense light lose one or more electrons and become ions. In strong fields, the process is predicted to occur via tunnelling through the binding potential that is suppressed by the light field near the peaks of its oscillations. Here we report the real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling. The process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds. This suggests a new technique, attosecond tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution. The utility of attosecond tunnelling is demonstrated by capturing multi-electron excitation (shake-up) and relaxation (cascaded Auger decay) processes with subfemtosecond resolution.

10.
Appl Opt ; 45(17): 4147-56, 2006 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-16761058

RESUMEN

Chirped Mo/Si multilayer coatings have been designed, fabricated, and characterized for use in extreme-ultraviolet attosecond experiments. By numerically simulating the reflection of the attosecond pulse from a multilayer mirror during the optimization procedure based on a genetic algorithm, we obtain optimized layer designs. We show that normal incidence chirped multilayer mirrors capable of reflecting pulses of approximately 100 attoseconds (as) duration can be designed by enhancing the reflectivity bandwidth and optimizing the phase-shift behavior. The chirped multilayer coatings have been fabricated by electron-beam evaporation in an ultrahigh vacuum in combination with ion-beam polishing of the interfaces and in situ reflectivity measurement for layer thickness control. To analyze the aperiodic layer structure by hard-x-ray reflectometry, we have developed an automatic fitting procedure that allows us to determine the individual layer thicknesses with an error of less than 0.05 nm. The fabricated chirped mirror may be used for production of 150-160 as pulses.

11.
Phys Rev Lett ; 90(15): 153005, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12732034

RESUMEN

Using very high resolution achieved by the Doppler-free resonant Raman Auger technique, we have resolved the lowest terms of the series of inner-valence excitations 2s2p(5)((1,3)P)np 2S, 2P, and 2D in Ne+. The measured Auger anisotropic parameters and branching ratios help to establish the assignments of these levels. The measured lifetime widths are in reasonable agreements with ab initio calculations available in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...