Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropeptides ; 108: 102461, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39180950

RESUMEN

The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes are not fully understood. In this study, we show that induction of the unfolded protein response transcription factor, spliced X-box binding protein 1 (Xbp1s), in Agouti-Related Peptide (AgRP) neurons alone, is sufficient to not only protect against but also significantly reverse diet-induced obesity (DIO) as well as improve leptin and insulin sensitivity, despite activation of endoplasmic reticulum stress. We also demonstrate that constitutive expression of Xbp1s in AgRP neurons contributes to improved insulin sensitivity and glucose tolerance. Together, our results identify critical molecular mechanisms linking ER stress in arcuate AgRP neurons to acute leptin and insulin resistance as well as liver glucose metabolism in DIO and diabetes.

2.
J Neuroinflammation ; 20(1): 302, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38111048

RESUMEN

G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in  both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1ß and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1ß. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.


Asunto(s)
Ácidos Grasos Omega-3 , Microglía , Receptores Acoplados a Proteínas G , Adulto , Animales , Humanos , Ratones , Ansiedad/inducido químicamente , Ansiedad/tratamiento farmacológico , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/farmacología , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Enfermedades Neuroinflamatorias , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Br J Pharmacol ; 179(4): 600-624, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34519026

RESUMEN

Glucagon-like-peptide-1 (GLP-1) derived from gut enteroendocrine cells and a discrete population of neurons in the caudal medulla acts through humoral and neural pathways to regulate satiety, gastric motility and pancreatic endocrine function. These physiological attributes contribute to GLP-1 having a potent therapeutic action in glycaemic regulation and chronic weight management. In this review, we provide an overview of the neural circuits targeted by endogenous versus exogenous GLP-1 and related drugs. We also highlight candidate subpopulations of neurons and cellular mechanisms responsible for the acute and chronic effects of GLP-1 and GLP-1 receptor agonists on energy balance and glucose metabolism. Finally, we present potential future directions to translate these findings towards the development of effective therapies for treatment of metabolic disease. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Glucemia , Encéfalo/metabolismo , Metabolismo Energético , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas
4.
Mol Metab ; 54: 101352, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626854

RESUMEN

OBJECTIVE: Long-acting glucagon-like peptide-1 receptor agonists (GLP-1RAs), like liraglutide and semaglutide, are viable treatments for diabetes and obesity. Liraglutide directly activates hypothalamic proopiomelanocortin (POMC) neurons while indirectly inhibiting Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons ex vivo. While temporal control of GLP-1R agonist concentration as well as accessibility to tissues/cells can be achieved with relative ease ex vivo, in vivo this is dependent upon the pharmacokinetics of these agonists and relative penetration into structures of interest. Thus, whether liraglutide or semaglutide modifies the activity of POMC and NPY/AgRP neurons in vivo as well as mechanisms required for any changes in cellular activity remains undefined. METHODS: In order to resolve this issue, we utilized neuron-specific transgenic mouse models to examine changes in the activity of POMC and NPY/AgRP neurons after injection of either liraglutide or semaglutide (intraperitoneal - I.P. and subcutaneous - S·C.). POMC and NPY/AgRP neurons were targeted for patch-clamp electrophysiology as well as in vivo fiber photometry. RESULTS: We found that liraglutide and semaglutide directly activate and increase excitatory tone to POMC neurons in a time-dependent manner. This increased activity of POMC neurons required GLP-1Rs in POMC neurons as well as a downstream mixed cation channel comprised of TRPC5 subunits. We also observed an indirect upregulation of excitatory input to POMC neurons originating from glutamatergic cells that also required TRPC5 subunits. Conversely, GLP-1Ra's decreased excitatory input to and indirectly inhibited NPY/AgRP neurons through activation of K-ATP and TRPC5 channels in GABAergic neurons. Notably, the temporal activation of POMC and inhibition of NPY/AgRP neuronal activity after liraglutide or semaglutide was injected [either intraperitoneal (I.P.) or subcutaneous (S·C.)] was dependent upon the nutritional state of the animals (fed vs food-deprived). CONCLUSIONS: Our results support a mechanism of liraglutide and semaglutide in vivo to activate POMC while inhibiting NPY/AgRP neurons, which depends upon metabolic state and mirrors the pharmacokinetic profile of these compounds in vivo.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Péptidos Similares al Glucagón/farmacología , Liraglutida/farmacología , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos Similares al Glucagón/administración & dosificación , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Liraglutida/administración & dosificación , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Factores de Tiempo
5.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34549728

RESUMEN

ER stress and activation of the unfolded protein response in the periphery as well as the central nervous system have been linked to various metabolic abnormalities. Chemically lowering protein kinase R-like ER kinase (PERK) activity within the hypothalamus leads to decreased food intake and body weight. However, the cell populations required in this response remain undefined. In the current study, we investigated the effects of proopiomelanocortin-specific (POMC-specific) PERK deficiency on energy balance and glucose metabolism. Male mice deficient for PERK in POMC neurons exhibited improvements in energy balance on a high-fat diet, showing decreased food intake and body weight, independent of changes in glucose and insulin tolerances. The plant-based inhibitor of PERK, celastrol, increases leptin sensitivity, resulting in decreased food intake and body weight in a murine model of diet-induced obesity (DIO). Our data extend these observations by demonstrating that celastrol-induced improvements in leptin sensitivity and energy balance were attenuated in mice with PERK deficiency in POMC neurons. Altogether, these data suggest that POMC-specific PERK deficiency in male mice confers protection against DIO, possibly providing a new therapeutic target for the treatment of diabetes and metabolic syndrome.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Leptina/farmacología , Triterpenos Pentacíclicos/farmacología , Proopiomelanocortina/fisiología , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Núcleo Arqueado del Hipotálamo/citología , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Estrés del Retículo Endoplásmico , Resistencia a la Insulina , Masculino , Ratones , Ratones Noqueados , Neuronas , Obesidad/etiología , Obesidad/prevención & control , Proopiomelanocortina/metabolismo , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA