Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(2): e0246123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33577565

RESUMEN

BACKGROUND: Nasal High Flow (NHF) therapy delivers flows of heated humidified gases up to 60 LPM (litres per minute) via a nasal cannula. Particles of oral/nasal fluid released by patients undergoing NHF therapy may pose a cross-infection risk, which is a potential concern for treating COVID-19 patients. METHODS: Liquid particles within the exhaled breath of healthy participants were measured with two protocols: (1) high speed camera imaging and counting exhaled particles under high magnification (6 participants) and (2) measuring the deposition of a chemical marker (riboflavin-5-monophosphate) at a distance of 100 and 500 mm on filter papers through which air was drawn (10 participants). The filter papers were assayed with HPLC. Breathing conditions tested included quiet (resting) breathing and vigorous breathing (which here means nasal snorting, voluntary coughing and voluntary sneezing). Unsupported (natural) breathing and NHF at 30 and 60 LPM were compared. RESULTS: Imaging: During quiet breathing, no particles were recorded with unsupported breathing or 30 LPM NHF (detection limit for single particles 33 µm). Particles were detected from 2 of 6 participants at 60 LPM quiet breathing at approximately 10% of the rate caused by unsupported vigorous breathing. Unsupported vigorous breathing released the greatest numbers of particles. Vigorous breathing with NHF at 60 LPM, released half the number of particles compared to vigorous breathing without NHF.Chemical marker tests: No oral/nasal fluid was detected in quiet breathing without NHF (detection limit 0.28 µL/m3). In quiet breathing with NHF at 60 LPM, small quantities were detected in 4 out of 29 quiet breathing tests, not exceeding 17 µL/m3. Vigorous breathing released 200-1000 times more fluid than the quiet breathing with NHF. The quantities detected in vigorous breathing were similar whether using NHF or not. CONCLUSION: During quiet breathing, 60 LPM NHF therapy may cause oral/nasal fluid to be released as particles, at levels of tens of µL per cubic metre of air. Vigorous breathing (snort, cough or sneeze) releases 200 to 1000 times more oral/nasal fluid than quiet breathing (p < 0.001 with both imaging and chemical marker methods). During vigorous breathing, 60 LPM NHF therapy caused no statistically significant difference in the quantity of oral/nasal fluid released compared to unsupported breathing. NHF use does not increase the risk of dispersing infectious aerosols above the risk of unsupported vigorous breathing. Standard infection prevention and control measures should apply when dealing with a patient who has an acute respiratory infection, independent of which, if any, respiratory support is being used. CLINICAL TRIAL REGISTRATION: ACTRN12614000924651.


Asunto(s)
Espiración , Terapia por Inhalación de Oxígeno/efectos adversos , Terapia por Inhalación de Oxígeno/métodos , Adulto , Pruebas Respiratorias/métodos , COVID-19/terapia , Cánula , Femenino , Humanos , Masculino , Microscopía por Video , Nariz/química , Respiración , Frecuencia Respiratoria
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4737-4740, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946920

RESUMEN

Cardiovascular diseases (CVD) are the leading cause of death in the developed world and aortic aneurysm is a key contributor. Aortic aneurysms typically occur in the thoracic aorta and can extend into the descending aorta. The Frozen Elephant Trunk stent (FET) is one of the leading treatments for the aneurysms extending into the descending aorta. This study focuses on the in-vitro experimentation of a stented descending aorta, investigating the haemodynamics in a compliant phantom. A silicone phantom of the descending aorta was manufactured using a lost core casting method. A PVC stent was manufactured using the same mould core. Particle Image Velocimetry (PIV) was used for pulsatile studies, focusing specifically on the passive fixation at the distal end of the FET. The results showed an apparent expansion in the diastolic period that was identified to be a collapse in the lateral plane. Flow recirculation regions were identified during the collapse. The collapse was attributed to low upstream and high downstream pressures causing a vacuum effect. The findings may imply a potential risk introduced by the FET stent that requires further investigation.


Asunto(s)
Aorta Torácica/fisiología , Hemodinámica , Stents , Aneurisma de la Aorta Torácica/terapia , Humanos , Fantasmas de Imagen , Reología
3.
Ann Biomed Eng ; 44(10): 3007-3019, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27059224

RESUMEN

Nasal high flow (NHF) therapy is used to treat a variety of respiratory disorders to improve patient oxygenation. A CO2 washout mechanism is believed to be responsible for the observed increase in oxygenation. In this study, experimentally validated Computational Fluid Dynamics simulations of the CO2 concentration within the upper airway during unassisted and NHF assisted breathing were undertaken with the aim of exploring the existence of this washout mechanism. An anatomically accurate nasal cavity model was generated from a CT scan and breathing was reproduced using a Fourier decomposition of a physiologically measured breath waveform. Time dependent CO2 profiles were obtained at the entrance of the trachea in the experimental model, and were used as simulation boundary conditions. Flow recirculation features were observed in the anterior portion of the nasal cavity upon application of the therapy. This causes the CO2 rich gas to vent from the nostrils reducing the CO2 concentration in the dead space and lowering the inspired CO2 volume. Increasing therapy flow rate increases the penetration depth within the nasal cavity of the low CO2 concentration gas. A 65% decrease in inspired CO2 was observed for therapy flow rates ranging from 0 to 60 L min(-1) supporting the washout mechanism theory.


Asunto(s)
Dióxido de Carbono/metabolismo , Oxigenoterapia Hiperbárica , Modelos Biológicos , Cavidad Nasal/metabolismo , Tráquea/metabolismo , Adulto , Humanos , Masculino , Cavidad Nasal/fisiopatología , Tráquea/fisiopatología
4.
Int J Legal Med ; 130(2): 563-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25773915

RESUMEN

Blood expirated from the nose may leave a characteristic bloodstain at a crime scene which can provide important clues for reconstructing events during a violent assault. Little research has been done on the typical velocities, trajectories and size distribution that can be expected from expirated blood. An experimental fluid dynamics technique known as stereoscopic particle image velocimetry is used in this work to obtain the air velocity field inside and outside the nostrils during exhalation. A numerical model was then used to compute the trajectory of blood drops of 0.5 and 2 mm. The drops were tracked until ground plane impact below the nostril exit. Three heights were investigated, 1.5, 1.6 and 1.7 m. For an expiration flow rate of 32 l/min in vivo, there is a maximum exit velocity from the nostril of approximately 4 m/s, with a 0.5 m/s difference between nostrils. After the drops have traversed the distances investigated, drops of 0.5 and 2 mm in diameter from both nostrils are at a similar velocity. This implies that the gravitational acceleration after the drops leave the jet has the most influence on velocity. It is however shown that exit velocity does affect impact location. Drop size affects both impact location and impact velocity. An increase in height increases the distance traversed. Compared to the 2-mm drop, the 0.5 mm had a lower impact velocity, but its impact location in the ground plane was further from the nostril exit. Understanding the physics of expirated blood flight allows better interpretation of expirated stains at crime scenes.


Asunto(s)
Manchas de Sangre , Nariz , Reología , Simulación por Computador , Ciencias Forenses , Humanos , Modelos Biológicos
5.
Forensic Sci Int ; 245: 107-20, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25447183

RESUMEN

Bloodstain Pattern Analysis (BPA) provides information about events during an assault, e.g. location of participants, weapon type and number of blows. To extract the maximum information from spatter stains, the size, velocity and direction of the drop that produces each stain, and forces acting during flight, must be known. A numerical scheme for accurate modeling of blood drop flight, in typical crime scene conditions, including droplet oscillation, deformation and in-flight disintegration, was developed and validated against analytical and experimental data including passive blood drop oscillations, deformation at terminal velocity, cast-off and impact drop deformation and breakup features. 4th order Runge-Kutta timestepping was used with the Taylor Analogy Breakup (TAB) model and Pilch and Erdman's (1987) expression for breakup time. Experimental data for terminal velocities, oscillations, and deformation was obtained via digital high-speed imaging. A single model was found to describe drop behavior accurately in passive, cast off and impact scenarios. Terminal velocities of typical passive drops falling up to 8m, distances and times required to reach them were predicted within 5%. Initial oscillations of passive blood drops with diameters of 1mm

Asunto(s)
Movimientos del Aire , Manchas de Sangre , Modelos Estadísticos , Fenómenos Biofísicos , Medicina Legal/métodos , Humanos
6.
Forensic Sci Int ; 228(1-3): 75-82, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23597743

RESUMEN

Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water.


Asunto(s)
Manchas de Sangre , Sangre , Gravitación , Armas , Animales , Biofisica , Medicina Legal , Modelos Animales , Fotograbar , Propiedades de Superficie , Porcinos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...