Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(2): 665-675, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865886

RESUMEN

Anisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion. However, the molecular machinery that deposits cuticle materials in the appropriate spatiotemporal manner to accommodate cell and tissue expansion remains elusive. Here, we report that PpABCB14, an ATP-binding cassette transporter in the moss Physcomitrium patens, regulates the anisotropy of cell expansion. PpABCB14 localized to expanding regions of leaf cells. Deletion of PpABCB14 resulted in impaired anisotropic cell expansion. Unexpectedly, the cuticle proper was reduced in the mutants, and the cuticular lipid components decreased. Moreover, induced PpABCB14 expression resulted in deformed leaf cells with increased cuticle lipid accumulation on the cell surface. Taken together, PpABCB14 regulates the anisotropy of cell expansion via cuticle deposition, revealing a regulatory mechanism for cell expansion in addition to the mechanisms acting on cell wall polysaccharides.


Asunto(s)
Bryopsida , Bryopsida/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Hojas de la Planta/metabolismo , Polisacáridos/metabolismo , Lípidos
2.
Proc Natl Acad Sci U S A ; 120(4): e2210632120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669117

RESUMEN

Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , División Celular/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
New Phytol ; 234(1): 137-148, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067949

RESUMEN

DNA topoisomerase 1 (TOP1) plays general roles in DNA replication and transcription by regulating DNA topology in land plants and metazoans. TOP1 is also involved in specific developmental events; however, whether TOP1 plays a conserved developmental role among multicellular organisms is unknown. Here, we investigated the developmental roles of TOP1 in the moss Physcomitrium (Physcomitrella) patens with gene targeting, microscopy, 3D image segmentation and crossing experiments. We discovered that the disruption of TOP1α, but not its paralogue TOP1ß, leads to a defect in fertilisation and subsequent sporophyte formation in P. patens. In the top1α mutant, the egg cell was functional for fertilisation, while sperm cells were fewer and infertile with disordered structures. We observed that the nuclei volume of wild-type sperm cells synchronously decreases during antheridium development, indicating chromatin condensation towards the compact sperm head. By contrast, the top1α mutant exhibited attenuated cell divisions and asynchronous and defective contraction of the nuclei of sperm cells throughout spermatogenesis. These results indicate that TOP1α is involved in cell division and chromatin condensation during spermatogenesis in P. patens. Our results suggest that the regulation of DNA topology by TOP1 plays a key role in spermatogenesis in both land plants and metazoans.


Asunto(s)
Bryopsida , Bryopsida/genética , División Celular , Espermatogénesis
4.
Nat Plants ; 6(9): 1098-1105, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807952

RESUMEN

DNA damage can result from intrinsic cellular processes and from exposure to stressful environments. Such DNA damage generally threatens genome integrity and cell viability1. However, here we report that the transient induction of DNA strand breaks (single-strand breaks, double-strand breaks or both) in the moss Physcomitrella patens can trigger the reprogramming of differentiated leaf cells into stem cells without cell death. After intact leafy shoots (gametophores) were exposed to zeocin, an inducer of DNA strand breaks, the STEM CELL-INDUCING FACTOR 1 (STEMIN1)2 promoter was activated in some leaf cells. These cells subsequently initiated tip growth and underwent asymmetric cell divisions to form chloronema apical stem cells, which are in an earlier phase of the life cycle than leaf cells and have the ability to form new gametophores. This DNA-strand-break-induced reprogramming required the DNA damage sensor ATR kinase, but not ATM kinase, together with STEMIN1 and closely related proteins. ATR was also indispensable for the induction of STEMIN1 by DNA strand breaks. Our findings indicate that DNA strand breaks, which are usually considered to pose a severe threat to cells, trigger cellular reprogramming towards stem cells via the activity of ATR and STEMINs.


Asunto(s)
Bryopsida/genética , Aumento de la Célula , Reprogramación Celular/genética , Daño del ADN/fisiología , Meristema/crecimiento & desarrollo , Meristema/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Bryopsida/crecimiento & desarrollo , Proliferación Celular
5.
Nat Plants ; 5(7): 681-690, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31285563

RESUMEN

Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants1-3. Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cells during post-embryonic development and regeneration4-6, indicating that land plants have an intrinsic ability to regulate epigenetic memory to initiate a new gene regulatory network. However, it is less well understood how epigenetic modifications are locally regulated to influence the specific genes necessary for cellular changes without affecting other genes in a genome. In this study, we found that ectopic induction of the AP2/ERF transcription factor STEMIN1 in leaf cells of the moss Physcomitrella patens decreases a repressive chromatin mark, histone H3 lysine 27 trimethylation (H3K27me3), on its direct target genes before cell division, resulting in the conversion of leaf cells to chloronema apical stem cells. STEMIN1 and its homologues positively regulate the formation of secondary chloronema apical stem cells from chloronema cells during development. Our results suggest that STEMIN1 functions within an intrinsic mechanism underlying local H3K27me3 reprogramming to initiate stem cell formation.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Bryopsida/genética , Reprogramación Celular , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Metilación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Células Madre/citología , Factores de Transcripción/genética
6.
Nat Plants ; 4(1): 36-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29296005

RESUMEN

MIKC classic (MIKCC)-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKCC-type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKCC-type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKCC-type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.


Asunto(s)
Bryopsida/genética , Células Germinativas de las Plantas/fisiología , Proteínas de Dominio MADS/metabolismo , Agua/metabolismo , Bryopsida/fisiología , División Celular , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Nat Commun ; 8: 14242, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128346

RESUMEN

Both land plants and metazoa have the capacity to reprogram differentiated cells to stem cells. Here we show that the moss Physcomitrella patens Cold-Shock Domain Protein 1 (PpCSP1) regulates reprogramming of differentiated leaf cells to chloronema apical stem cells and shares conserved domains with the induced pluripotent stem cell factor Lin28 in mammals. PpCSP1 accumulates in the reprogramming cells and is maintained throughout the reprogramming process and in the resultant stem cells. Expression of PpCSP1 is negatively regulated by its 3'-untranslated region (3'-UTR). Removal of the 3'-UTR stabilizes PpCSP1 transcripts, results in accumulation of PpCSP1 protein and enhances reprogramming. A quadruple deletion mutant of PpCSP1 and three closely related PpCSP genes exhibits attenuated reprogramming indicating that the PpCSP genes function redundantly in cellular reprogramming. Taken together, these data demonstrate a positive role of PpCSP1 in reprogramming, which is similar to the function of mammalian Lin28.


Asunto(s)
Bryopsida/fisiología , Reprogramación Celular/fisiología , Proteínas y Péptidos de Choque por Frío/fisiología , Proteínas de Plantas/fisiología , Células Madre/fisiología , Regiones no Traducidas 3'/fisiología , Diferenciación Celular/fisiología , Proteínas y Péptidos de Choque por Frío/química , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/citología , Hojas de la Planta/fisiología , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Dominios Proteicos/fisiología
8.
Biochem Biophys Res Commun ; 389(4): 612-5, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19755117

RESUMEN

Nutrient starvation induces autophagy to degrade cytoplasmic materials in the vacuole/lysosomes. In the yeast, Saccharomyces cerevisiae, Atg17, Atg29, and Atg31/Cis1 are specifically required for autophagosome formation by acting as a scaffold complex essential for pre-autophagosomal structure (PAS) organization. Here, we show that these proteins constitutively form an Atg17-Atg29-Atg31 ternary complex, in which phosphorylated Atg31 is included. Reconstitution analysis of the ternary complex in E. coli indicates that the three proteins are included in equimolar amounts in the complex. The molecular mass of a monomeric Atg17-Atg29-Atg31 complex is calculated at 97kDa; however, analytical ultracentrifugation shows that the molecular mass of the ternary complex is 198kDa, suggesting a dimeric complex. We propose that this ternary complex acts as a functional unit for autophagosome formation.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/química , Citosol/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ultracentrifugación
9.
Mol Biol Cell ; 19(5): 2039-50, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18287526

RESUMEN

Autophagy induced by nutrient depletion is involved in survival during starvation conditions. In addition to starvation-induced autophagy, the yeast Saccharomyces cerevisiae also has a constitutive autophagy-like system, the Cvt pathway. Among 31 autophagy-related (Atg) proteins, the function of Atg17, Atg29, and Atg31 is required specifically for autophagy. In this study, we investigated the role of autophagy-specific (i.e., non-Cvt) proteins under autophagy-inducing conditions. For this purpose, we used atg11Delta cells in which the Cvt pathway is abrogated. The autophagy-unique proteins are required for the localization of Atg proteins to the pre-autophagosomal structure (PAS), the putative site for autophagosome formation, under starvation condition. It is likely that these Atg proteins function as a ternary complex, because Atg29 and Atg31 bind to Atg17. The Atg1 kinase complex (Atg1-Atg13) is also essential for recruitment of Atg proteins to the PAS. The assembly of Atg proteins to the PAS is observed only under autophagy-inducing conditions, indicating that this structure is specifically involved in autophagosome formation. Our results suggest that Atg1 complex and the autophagy-unique Atg proteins cooperatively organize the PAS in response to starvation signals.


Asunto(s)
Fagosomas/metabolismo , Saccharomyces cerevisiae/citología , Autofagia , Eliminación de Gen , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Biochem Biophys Res Commun ; 356(2): 405-10, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17362880

RESUMEN

Autophagy is the bulk degradation of cytosolic materials in lysosomes/vacuoles of eukaryotic cells. In the yeast Saccharomyces cerevisiae, 17 Atg proteins are known to be involved in autophagosome formation. Genome wide analyses have shown that Atg17 interacts with numerous proteins. Further studies on these interacting proteins may provide further insights into membrane dynamics during autophagy. Here, we identify Cis1/Atg31 as a protein that exhibits similar phenotypes to Atg17. ATG31 null cells were defective in autophagy and lost viability under starvation conditions. Localization of Atg31 to pre-autophagosomal structures (PAS) was dependent on Atg17. Coimmunoprecipitation experiments indicated that Atg31 interacts with Atg17. Together, Atg31 is a novel protein that, in concert with Atg17, is required for proper autophagosome formation.


Asunto(s)
Proteínas Portadoras/fisiología , Fagosomas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas Relacionadas con la Autofagia , Saccharomyces cerevisiae/metabolismo
11.
Mol Biol Cell ; 16(5): 2544-53, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15743910

RESUMEN

In eukaryotic cells, nutrient starvation induces the bulk degradation of cellular materials; this process is called autophagy. In the yeast Saccharomyces cerevisiae, most of the ATG (autophagy) genes are involved in not only the process of degradative autophagy, but also a biosynthetic process, the cytoplasm to vacuole (Cvt) pathway. In contrast, the ATG17 gene is required specifically in autophagy. To better understand the function of Atg17, we have performed a biochemical characterization of the Atg17 protein. We found that the atg17delta mutant under starvation condition was largely impaired in autophagosome formation and only rarely contained small autophagosomes, whose size was less than one-half of normal autophagosomes in diameter. Two-hybrid analyses and coimmunoprecipitation experiments demonstrated that Atg17 physically associates with Atg1-Atg13 complex, and this binding was enhanced under starvation conditions. Atg17-Atg1 binding was not detected in atg13delta mutant cells, suggesting that Atg17 interacts with Atg1 through Atg13. A point mutant of Atg17, Atg17(C24R), showed reduced affinity for Atg13, resulting in impaired Atg1 kinase activity and significant defects in autophagy. Taken together, these results indicate that Atg17-Atg13 complex formation plays an important role in normal autophagosome formation via binding to and activating the Atg1 kinase.


Asunto(s)
Autofagia/genética , Autofagia/fisiología , Genes Fúngicos , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Medios de Cultivo , Microscopía Electrónica , Complejos Multiproteicos , Mutación , Fagosomas/fisiología , Fagosomas/ultraestructura , Fosfoproteínas/química , Plásmidos/genética , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Técnicas del Sistema de Dos Híbridos
12.
Autophagy ; 1(3): 163-70, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16874076

RESUMEN

The etiology of diabetic neuropathy is multifactorial and not fully elucidated, although oxidative stress and mitochondrial dysfunction are major factors. We reported previously that complement-inactivated sera from type 2 diabetic patients with neuropathy induce apoptosis in cultured neuronal cells, possibly through an autoimmune immunoglobulin-mediated pathway. Recent evidence supports an emerging role for autophagy in a variety of diseases. Here we report that exposure of human neuroblastoma SH-SY5Y cells to sera from type 2 diabetic patients with neuropathy is associated with increased levels of autophagosomes that is likely mediated by increased titers of IgM or IgG autoimmune immunoglobulins. The increased presence of macroautophagic vesicles was monitored using a specific immunohistochemical marker for autophagosomes, anti-LC3-II immunoreactivity, as well as the immunohistochemical signal for beclin-1, and was associated with increased co-localization with mitochondria in the cells exposed to diabetic neuropathic sera. We also report that dorsal root ganglia removed from streptozotocin-induced diabetic rats exhibit increased levels of autophagosomes and co-localization with mitochondria in neuronal soma, concurrent with enhanced binding of IgG and IgM autoimmune immunoglobulins. To our knowledge, this is the first evidence that the presence of autophagosomes is increased by a serum factor, likely autoantibody(ies) in a pathological condition. Stimulation of autophagy by an autoantibody-mediated pathway can provide a critical link between the immune system and the loss of function and eventual demise of neuronal tissue in type 2 diabetes.


Asunto(s)
Autofagia , Diabetes Mellitus Tipo 2/inmunología , Neuropatías Diabéticas/inmunología , Sueros Inmunes/inmunología , Mitocondrias/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autoinmunidad , Beclina-1 , Línea Celular Tumoral , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/sangre , Neuropatías Diabéticas/sangre , Femenino , Ganglios Espinales/patología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley
13.
J Cell Sci ; 117(Pt 13): 2805-12, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15169837

RESUMEN

Rat LC3, a homologue of yeast Atg8 (Aut7/Apg8), localizes to autophagosomal membranes after post-translational modifications. The C-terminal fragment of LC3 is cleaved immediately following synthesis to yield a cytosolic form called LC3-I. A subpopulation of LC3-I is further converted to an autophagosome-associating form, LC3-II. Because yeast Atg8 is conjugated with phosphatidylethanolamine (PE) by a ubiquitin-like system, it has been hypothesized that LC3 is modified in a similar manner. Here, we show that [(14)C]-ethanolamine was preferentially incorporated into LC3-II, suggesting that LC3-II is a PE-conjugated form. LC3-II can be a substrate of mammalian Atg4B, a homologue of yeast Atg8-PE deconjugase, supporting the idea that LC3-II is LC3-PE. Moreover, two other mammalian homologues of yeast Atg8, gamma-aminobutyric-acid-type-A-receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE16) also generate form II, which are recovered in membrane fractions. Generation of the form II correlates with autophagosome association of GABARAP and GATE16. These results suggest that all mammalian Atg8 homologues receive a common modification to associate with autophagosomal membrane as the form II.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Radioisótopos de Carbono , Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Línea Celular Tumoral , Etanolamina/metabolismo , Colorantes Fluorescentes , Glicina/química , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Sustancias Luminiscentes , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Proteínas de Microfilamentos , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/ultraestructura , Fagosomas/ultraestructura , Pruebas de Precipitina , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Células Madre/citología , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato , Teratocarcinoma
14.
J Leukoc Biol ; 74(6): 1108-16, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12960228

RESUMEN

We show that insulin-dependent signals regulate azurophil granule-selective macroautophagy in human myeloid cells. Depletion of insulin from an insulin-transferrin-supplemented serum-free medium caused growth retardation of myeloblastic HL-60 cells, in which sequestration of electronic-dense cytoplasmic materials by autophagosomes was observed. Positive immunoreactivity with anti-CD68, anti-cathepsin D, and anti-myeloperoxidase antibodies indicated that the sequestrated materials were azurophil granules, the granulocyte/macrophage lineage-specific lysosome-like particles. By contrast, other organelles, including the mitochondria, endoplasmic reticulum, and Golgi apparatus remained intact, indicating that the macroautophagy selectively targeted azurophil granules. The addition of insulin induced rapid activations of p70S6K and Akt, and the cells were rescued from macroautophagy. Rapamycin, an inhibitor of mammalian target of rapamycin, did not block the insulin-mediated rescue from macroautophagy, although it nullified the activation of p70S6K and cell growth. Low doses of LY294002, a phosphatidyl-inositol-3-kinase inhibitor, which abolished cell growth and p70S6K activity but did not influence Akt activity, did not block the insulin-mediated rescue either. By contrast, low doses of Akt-specific inhibitors, which inhibited neither cell growth nor p70S6K activity, completely blocked the insulin-mediated rescue from macroautophagy. Thus, insulin-dependent signals are responsible for the control of azurophil granule-selective macroautophagy via Akt-dependent pathways, while p70S6K-dependent pathways promote cell growth.


Asunto(s)
Autofagia/fisiología , Gránulos Citoplasmáticos/metabolismo , Hipoglucemiantes/farmacología , Insulina/farmacología , Proteínas Serina-Treonina Quinasas , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Cromonas/farmacología , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Aparato de Golgi/metabolismo , Células HL-60 , Humanos , Inmunosupresores/farmacología , Mitocondrias/metabolismo , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Sirolimus/farmacología
15.
J Biol Chem ; 278(38): 36819-29, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12837764

RESUMEN

Mammalian enzymes in late cholesterol biosynthesis have been localized uniformly over the endoplasmic reticulum by enzymatic methods. We report here the first mammalian cholesterol biosynthetic enzyme unequivocally localized at the surface of intracellular lipid storage droplets. NAD(P)H steroid dehydrogenase-like protein (Nsdhl), a mammalian C-3 sterol dehydrogenase involved in the conversion of lanosterol into cholesterol, was localized on lipid droplets by immunofluorescence microscopy and subcellular fractionation. Nsdhl was localized on lipid droplets even when cell growth exclusively depended on cholesterol biosynthesis mediated by this enzyme. Depletion of fatty acids in culture medium reduced the development of lipid droplets and caused Nsdhl redistribution to the endoplasmic reticulum. Elevating oleic acid in medium induced well developed, Nsdhl-positive lipid droplets, and simultaneously caused a reduction in cellular conversion of lanosterol into cholesterol. Manipulated human NSDHL with a missense mutation (G205S) causing a human embryonic developmental disorder, congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome, could no longer be localized on lipid droplets. Although the expression of wild-type NSDHL could restore the defective growth of a CHO cholesterol auxotroph, LEX2 in cholesterol-deficient medium, the expression of NSDHL(G205S) failed to do so. These results point to functional significance of the localization of Nsdhl on lipid droplets. Functional significance was also suggested by the colocalization of Nsdhl on lipid droplets with TIP47, a cargo selection protein for mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. These results add to the growing notion that the lipid droplet is an organelle endowed with more complex roles in various biological phenomena.


Asunto(s)
Hidroxiesteroide Deshidrogenasas/biosíntesis , Metabolismo de los Lípidos , NADPH Deshidrogenasa/biosíntesis , NADPH Deshidrogenasa/química , 3-Hidroxiesteroide Deshidrogenasas , Animales , Células CHO , Colesterol/metabolismo , Cromatografía en Capa Delgada , Cricetinae , ADN Complementario/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Células HeLa , Humanos , Hidroxiesteroide Deshidrogenasas/química , Microscopía Fluorescente , Modelos Químicos , Mutación , Mutación Missense , Péptidos/química , Esteroles/química , Fracciones Subcelulares/metabolismo , Síndrome , Red trans-Golgi/metabolismo
16.
Cell Struct Funct ; 27(1): 29-37, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11937716

RESUMEN

Mouse SKD1 AAA ATPase is involved in the sorting and transport from endosomes; cells overexpressing a dominant-negative mutant, SKD1(E235Q) were defective in endosomal transport to both the plasma membranes and lysosomes (Yoshimori et al., 2000). In the present study, we demonstrated that overexpression of SKD1(E235Q) using an adenovirus delivery system caused a defect in autophagy-dependent bulk protein degradation. Morphological observations suggested that this inhibition of autophagy results from an impairment of autolysosome formation. SKD1(E235Q) overexpression also inhibited transport from endosomes to autophagosomes, an event normally occurring prior to fusion with lysosomes. These results indicate that SKD1-dependent endosomal membrane trafficking is required for formation of autolysosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Autofagia/fisiología , Endosomas/fisiología , Lisosomas/fisiología , Proteínas Represoras/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenoviridae/genética , Sustitución de Aminoácidos , Transporte Biológico/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Células HeLa/metabolismo , Humanos , Metabolismo de los Lípidos , Fusión de Membrana/fisiología , Fagosomas/fisiología , Mutación Puntual , Proteínas Represoras/genética , ATPasas de Translocación de Protón Vacuolares , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...