Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; : e0036924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717159

RESUMEN

Most of Earth's trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth's land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grew Pinus muricata plants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.IMPORTANCEUnderstanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)-one of the most dominant soil microbial groups on Earth-shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.

2.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805274

RESUMEN

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Asunto(s)
Cambio Climático , Micorrizas , Simbiosis , Árboles , Micorrizas/fisiología , Árboles/microbiología , América del Norte , Bosques , Biodiversidad , Ecosistema
3.
ISME Commun ; 4(1): ycae031, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38524763

RESUMEN

Functional traits influence the assembly of microbial communities, but identifying these traits in the environment has remained challenging. We studied ectomycorrhizal fungal (EMF) communities inhabiting Populus trichocarpa roots distributed across a precipitation gradient in the Pacific Northwest, USA. We profiled these communities using taxonomic (meta-barcoding) and functional (metagenomic) approaches. We hypothesized that genes involved in fungal drought-stress tolerance and fungal mediated plant water uptake would be most abundant in drier soils. We were unable to detect support for this hypothesis; instead, the abundance of genes involved in melanin synthesis, hydrophobins, aquaporins, trehalose-synthases, and other gene families exhibited no significant shifts across the gradient. Finally, we studied variation in sequence homology for certain genes, finding that fungal communities in dry soils are composed of distinct aquaporin and hydrophobin gene sequences. Altogether, our results suggest that while EMF communities exhibit significant compositional shifts across this gradient, coupled functional turnover, at least as inferred using community metagenomics is limited. Accordingly, the consequences of these distinct EMF communities on plant water uptake remain critically unknown, and future studies targeting the expression of genes involved in drought stress tolerance are required.

4.
Nat Microbiol ; 8(12): 2406-2419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973868

RESUMEN

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.


Asunto(s)
Micorrizas , Populus , Árboles/microbiología , Ecosistema , Populus/microbiología , Biodiversidad
5.
Trends Ecol Evol ; 38(8): 693-696, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270320

RESUMEN

Soil microorganisms are sensitive indicators of land-use and climate change in the Amazon, revealing shifts in important processes such as greenhouse gas (GHG) production, but they have been overlooked in conservation and management initiatives. Integrating soil biodiversity with other disciplines while expanding sampling efforts and targeted microbial groups is crucially needed.


Asunto(s)
Ecosistema , Suelo , Bosque Lluvioso , Biodiversidad , Cambio Climático
6.
Curr Biol ; 33(14): 2878-2887.e4, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37369208

RESUMEN

Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.


Asunto(s)
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Ecosistema , Bosques , Plantas/microbiología , Raíces de Plantas , Bacterias/genética , Suelo , Microbiología del Suelo , Hongos/genética , Árboles/microbiología
7.
ISME Commun ; 3(1): 44, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137953

RESUMEN

Although microbes are the major agent of wood decomposition - a key component of the carbon cycle - the degree to which microbial community dynamics affect this process is unclear. One key knowledge gap is the extent to which stochastic variation in community assembly, e.g. due to historical contingency, can substantively affect decomposition rates. To close this knowledge gap, we manipulated the pool of microbes dispersing into laboratory microcosms using rainwater sampled across a transition zone between two vegetation types with distinct microbial communities. Because the laboratory microcosms were initially identical this allowed us to isolate the effect of changing microbial dispersal directly on community structure, biogeochemical cycles and wood decomposition. Dispersal significantly affected soil fungal and bacterial community composition and diversity, resulting in distinct patterns of soil nitrogen reduction and wood mass loss. Correlation analysis showed that the relationship among soil fungal and bacterial community, soil nitrogen reduction and wood mass loss were tightly connected. These results give empirical support to the notion that dispersal can structure the soil microbial community and through it ecosystem functions. Future biogeochemical models including the links between soil microbial community and wood decomposition may improve their precision in predicting wood decomposition.

9.
Ecol Evol ; 12(1): e8478, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127017

RESUMEN

Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators. Intrinsic correlation between proximity to adult conspecifics (i.e., recruitment neighborhood) and local seedling density, arising from dispersal, makes it difficult to separate the independent and interactive factors that contribute to recruitment success. Here, we present a field experiment in which we manipulated both the recruitment neighborhood and seedling density to explore how they interact to influence the growth and survival of Dryobalanops aromatica, a dominant ectomycorrhizal tree species in a Bornean tropical rainforest. First, we found that both local seedling density and recruitment neighborhood had effects on performance of D. aromatica seedlings, though the nature of these impacts varied between growth and survival. Second, we did not find strong evidence that the effect of density on seedling survival is dependent on the presence of conspecific adult trees. However, accumulation of mutualistic fungi beneath conspecifics adults does facilitate establishment of D. aromatica seedlings. In total, our results suggest that recruitment near adult conspecifics was not associated with a performance cost and may have weakly benefitted recruiting seedlings. Positive effects of conspecifics may be a factor facilitating the regional hyperabundance of this species. Synthesis: Our results provide support for the idea that dominant species in diverse forests may escape the localized recruitment suppression that limits abundance in rarer species.

11.
New Phytol ; 233(3): 1331-1344, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797927

RESUMEN

Ectomycorrhizal symbiosis is essential for the nutrition of most temperate forest trees and helps regulate the movement of carbon (C) and nitrogen (N) through forested ecosystems. The factors governing the exchange of plant C for fungal N, however, remain obscure. Because competition and soil resources may influence ectomycorrhizal resource movement, we performed a 10-month split-root microcosm study using Pinus muricata seedlings with Thelephora terrestris, Suillus pungens, or no ectomycorrhizal fungus, under two N concentrations in artificial soil. Fungi competed directly with roots and indirectly with each other. We used stable isotope enrichment to track plant photosynthate and fungal N. For T. terrestris, plants received N commensurate with the C given to their fungal partners. Thelephora terrestris was a superior mutualist under high-N conditions. For S. pungens, plant C and fungal N exchange were not coupled. However, in low-N conditions, plants preferentially allocated C to S. pungens rather than T. terrestris. Our results suggest that ectomycorrhizal resource transfer depends on competitive and nutritional context. Plants can exchange C for fungal N, but coupling of these resources can depend on the fungal species and soil N. Understanding the diversity of fungal strategies, and how they change with environmental context, reveals mechanisms driving this important symbiosis.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Micorrizas/fisiología , Nitrógeno , Pinus/microbiología , Raíces de Plantas/microbiología , Simbiosis
12.
Am Nat ; 198(4): 460-472, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559611

RESUMEN

AbstractAll organisms struggle to make sense of environmental stimuli in order to maximize their fitness. For animals, the responses of single cells and superorganisms to stimuli are generally proportional to stimulus ratios, a phenomenon described by Weber's law. However, Weber's law has not yet been used to predict how plants respond to stimuli generated from their symbiotic partners. Here we develop a model for quantitatively predicting the ratios of carbon (C) allocation to symbionts that provide nutrients to their plant host. Consistent with Weber's law, our model demonstrates that the optimal ratio of resources allocated to a less beneficial relative to a more beneficial symbiont scale to the ratio of the growth benefits of the two strains. As C allocation to symbionts increases, the ratio of C allocation to two strains approaches the square root of the ratio of symbiotic growth benefits (e.g., a worse symbiont providing one-fourth the benefits gets 1/4=1/2 the C of a better symbiont). We document a compelling correspondence between our square root model prediction and a meta-analysis of experimental literature on C allocation. This type of preferential allocation can promote coexistence between more beneficial and less beneficial symbionts, offering a potential mechanism behind the high diversity of microbial symbionts observed in nature.


Asunto(s)
Plantas , Simbiosis , Animales , Carbono , Análisis Costo-Beneficio
13.
Ecol Lett ; 24(7): 1352-1362, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33894029

RESUMEN

Decomposition has historically been considered a function of climate and substrate but new research highlights the significant role of specific micro-organisms and their interactions. In particular, wood decay is better predicted by variation in fungal communities than in climate. Multiple links exist: interspecific competition slows decomposition in more diverse fungal communities, whereas trait variation between different communities also affects process rates. Here, we paired field and laboratory experiments using a dispersal gradient at a forest-shrubland ecotone to examine how fungi affect wood decomposition across scales. We observed that while fungal communities closer to forests were capable of faster decomposition, wood containing diverse fungal communities decomposed more slowly, independent of location. Dispersal-driven stochasticity in small-scale community assembly was nested within large-scale turnover in the regional species pool, decoupling the two patterns. We thus find multiple distinct links between microbes and ecosystem function that manifest across different spatial scales.


Asunto(s)
Ecosistema , Micobioma , Bosques , Hongos , Microbiología del Suelo , Madera
14.
Nat Ecol Evol ; 5(4): 504-512, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33633371

RESUMEN

Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling their sensitivity in 29 sites that experienced multi-decadal alterations in fire frequencies in savanna and forest ecosystems across tropical and temperate regions. Fire had a strong overall effect on tree communities, with an average fire frequency (one fire every three years) reducing stem density by 48% and basal area by 53% after 50 years, relative to unburned plots. The largest changes occurred in savanna ecosystems and in sites with strong wet seasons or strong dry seasons, pointing to fire characteristics and species composition as important. Analyses of functional traits highlighted the impact of fire-driven changes in soil nutrients because frequent burning favoured trees with low biomass nitrogen and phosphorus content, and with more efficient nitrogen acquisition through ectomycorrhizal symbioses. Taken together, the response of trees to altered fire frequencies depends both on climatic and vegetation determinants of fire behaviour and tree growth, and the coupling between fire-driven nutrient losses and plant traits.


Asunto(s)
Incendios , Árboles , Ecosistema , Bosques , Suelo
15.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512432

RESUMEN

Ericaceous plants rely on ericoid mycorrhizal fungi for nutrient acquisition. However, the factors that affect the composition and structure of fungal communities associated with the roots of ericaceous plants remain largely unknown. Here, we use a 4.1-million-year (myr) soil chronosequence in Hawaii to test the hypothesis that changes in nutrient availability with soil age determine the diversity and species composition of fungi associated with ericoid roots. We sampled roots of a native Hawaiian plant, Vaccinium calycinum, and used DNA metabarcoding to quantify changes in fungal diversity and community composition. We also used a fertilization experiment at the youngest and oldest sites to assess the importance of nutrient limitation. We found an increase in diversity and a clear pattern of species turnover across the chronosequence, driven largely by putative ericoid mycorrhizal fungi. Fertilization with nitrogen at the youngest site and phosphorus at the oldest site reduced fungal diversity, suggesting a direct role of nutrient limitation. Our results also reveal the presence of novel fungal species associated with Hawaiian Ericaceae and suggest a greater importance of phosphorus availability for communities of ericoid mycorrhizal fungi than is generally assumed.


Asunto(s)
Ericaceae , Micorrizas , Hongos/genética , Hawaii , Micorrizas/genética , Fósforo , Raíces de Plantas , Suelo , Microbiología del Suelo
16.
Mol Ecol ; 30(3): 844-854, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33295012

RESUMEN

Wildfire affects our planet's biogeochemistry both by burning biomass and by driving changes in ecological communities and landcover. Some plants and ecosystem types are threatened by increasing fire pressure while others respond positively to fire, growing in local and regional abundance when it occurs regularly. However, quantifying total ecosystem response to fire demands consideration of impacts not only on aboveground vegetation, but also on soil microbes like fungi, which influence decomposition and nutrient mineralization. If fire-resistant soil fungal communities co-occur with similarly adapted plants, these above- and belowground ecosystem components should shift and recover in relative synchrony after burning. If not, fire might decouple ecosystem processes governed by these different communities, affecting total functioning. Here, we use a natural experiment to test whether fire-dependent ecosystems host unique, fire-resistant fungal communities. We surveyed burned and unburned areas across two California ecosystem types with differing fire ecologies in the immediate aftermath of a wildfire, finding that the soil fungal communities of fire-dependent oak woodlands differ from those of neighbouring mixed evergreen forests. We discovered furthermore that the latter are more strongly altered compositionally by fire than the former, suggesting that differences in fungal community structure support divergent community responses to fire across ecosystems. Our results thus indicate that fire-dependent ecosystems may host fire-resistant fungal communities.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , Hongos , Suelo
17.
New Phytol ; 228(1): 253-268, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32436227

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting plant-soil feedbacks, but how these feedbacks are constrained by lithology is poorly understood. We investigated the hypothesis that lithological drivers of soil fertility filter plant resource economic strategies in ways that influence the relative fitness of trees with AMF or EMF symbioses in a Bornean rain forest containing species with both mycorrhizal strategies. Using forest inventory data on 1245 tree species, we found that although AMF-hosting trees had greater relative dominance on all soil types, with declining lithological soil fertility EMF-hosting trees became more dominant. Data on 13 leaf traits and wood density for a total of 150 species showed that variation was almost always associated with soil type, whereas for six leaf traits (structural properties; carbon, nitrogen, phosphorus ratios, nitrogen isotopes), variation was also associated with mycorrhizal strategy. EMF-hosting species had slower leaf economics than AMF-hosts, demonstrating the central role of mycorrhizal symbiosis in plant resource economies. At the global scale, climate has been shown to shape forest mycorrhizal composition, but here we show that in communities it depends on soil lithology, suggesting scale-dependent abiotic factors influence feedbacks underlying the relative fitness of different mycorrhizal strategies.


Asunto(s)
Micorrizas , Bosques , Raíces de Plantas , Bosque Lluvioso , Suelo , Microbiología del Suelo , Árboles
18.
FEMS Microbiol Ecol ; 96(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32472932

RESUMEN

The response to global change by soil microbes is set to affect important ecosystem processes. These impacts could be most immediate in transitional zones, such as the temperate-boreal forest ecotone, yet previous work in these forests has primarily focused on specific subsets of microbial taxa. Here, we examined how bacterial and fungal communities respond to simulated above- and below-ground warming under realistic field conditions in closed and open canopy treatments in Minnesota, USA. Our results show that warming and canopy disturbance shifted bacterial and fungal community structure as dominant bacterial and fungal groups differed in the direction and intensity of their responses. Ectomycorrhizal and saprotrophic fungal communities with greater connectivity (higher prevalence of strongly interconnected taxa based on pairwise co-occurrence relationships) were more resistant to compositional change. Warming effects on soil enzymes involved in the hydrolytic and oxidative liberation of carbon from plant cell walls and nutrients from organic matter were most strongly linked to fungal community responses, although community structure-function relationships differed between fungal guilds. Collectively, these findings indicate that warming and disturbance will influence the composition and function of microbial communities in the temperate-boreal ecotone, and fungal responses are particularly important to understand for predicting future ecosystem functioning.


Asunto(s)
Microbiota , Micorrizas , Ecosistema , Bosques , Hongos , Suelo , Microbiología del Suelo , Taiga
19.
Ecology ; 101(8): e03083, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32323299

RESUMEN

While work in temperate forests suggests that there are consistent differences in plant-soil feedback (PSF) between plants with arbuscular and ectomycorrhizal associations, it is unclear whether these differences exist in tropical rainforests. We tested the effects of mycorrhizal type, phylogenetic relationships to overstory species, and soil fertility on the growth of tree seedlings in a tropical Bornean rainforest with a high diversity of both ectomycorrhizal and arbuscular mycorrhizal trees. We found that ectomycorrhizal tree seedlings had higher growth in soils conditioned by close relatives and that this was associated with higher mycorrhizal colonization. By contrast, arbuscular mycorrhizal tree seedlings generally grew more poorly in soils conditioned by close relatives. For ectomycorrhizal species, the phylogenetic trend was insensitive to soil fertility. For arbuscular mycorrhizal seedlings, however, the effect of growing in soils conditioned by close relatives became increasingly negative as soil fertility increased. Our results demonstrate consistent effects of mycorrhizal type on plant-soil feedbacks across forest biomes. The positive effects of ectomycorrhizal symbiosis may help explain biogeographic variation across tropical forests, such as familial dominance of the Dipterocarpaceae in southeast Asia. However, positive feedbacks also raise questions about the role of PSFs in maintaining tropical diversity.


Asunto(s)
Micorrizas , Retroalimentación , Bosques , Hongos , Micorrizas/genética , Filogenia , Suelo , Microbiología del Suelo
20.
New Phytol ; 226(2): 292-294, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32053732
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...