Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119714, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056328

RESUMEN

Evapotranspiration (ETo) is a complex and non-linear hydrological process with a significant impact on efficient water resource planning and long-term management. The Penman-Monteith (PM) equation method, developed by the Food and Agriculture Organization of the United Nations (FAO), represents an advancement over earlier approaches for estimating ETo. Eto though reliable, faces limitations due to the requirement for climatological data not always available at specific locations. To address this, researchers have explored soft computing (SC) models as alternatives to conventional methods, known for their exceptional accuracy across disciplines. This critical review aims to enhance understanding of cutting-edge SC frameworks for ETo estimation, highlighting advancements in evolutionary models, hybrid and ensemble approaches, and optimization strategies. Recent applications of SC in various climatic zones in Bangladesh are evaluated, with the order of preference being ANFIS > Bi-LSTM > RT > DENFIS > SVR-PSOGWO > PSO-HFS due to their consistently high accuracy (RMSE and R2). This review introduces a benchmark for incorporating evolutionary computation algorithms (EC) into ETo modeling. Each subsection addresses the strengths and weaknesses of known SC models, offering valuable insights. The review serves as a valuable resource for experienced water resource engineers and hydrologists, both domestically and internationally, providing comprehensive SC modeling studies for ETo forecasting. Furthermore, it provides an improved water resources monitoring and management plans.


Asunto(s)
Algoritmos , Computación Suave , Bangladesh , Hidrología , Agricultura
2.
Chemosphere ; 336: 139291, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37353165

RESUMEN

This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Bacterias
3.
J Environ Manage ; 326(Pt B): 116813, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435143

RESUMEN

Globally, many studies on machine learning (ML)-based flood susceptibility modeling have been carried out in recent years. While majority of those models produce reasonably accurate flood predictions, the outcomes are subject to uncertainty since flood susceptibility models (FSMs) may produce varying spatial predictions. However, there have not been many attempts to address these uncertainties because identifying spatial agreement in flood projections is a complex process. This study presents a framework for reducing spatial disagreement among four standalone and hybridized ML-based FSMs: random forest (RF), k-nearest neighbor (KNN), multilayer perceptron (MLP), and hybridized genetic algorithm-gaussian radial basis function-support vector regression (GA-RBF-SVR). Besides, an optimized model was developed combining the outcomes of those four models. The southwest coastal region of Bangladesh was selected as the case area. A comparable percentage of flood potential area (approximately 60% of the total land areas) was produced by all ML-based models. Despite achieving high prediction accuracy, spatial discrepancy in the model outcomes was observed, with pixel-wise correlation coefficients across different models ranging from 0.62 to 0.91. The optimized model exhibited high prediction accuracy and improved spatial agreement by reducing the number of classification errors. The framework presented in this study might aid in the formulation of risk-based development plans and enhancement of current early warning systems.


Asunto(s)
Inundaciones , Aprendizaje Automático , Incertidumbre , Redes Neurales de la Computación , Algoritmos
4.
Environ Res ; 214(Pt 1): 113808, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35798264

RESUMEN

Increasing human population, deforestation and man-made climate change are likely to exacerbate the negative effects on freshwater ecosystems and species endangerment. Consequently, the biodiversity of freshwater continues to dwindle at an alarming rate. However, this particular topic lacks sufficient attention from conservation ecologists and policymakers, resulting in a dearth of data and comprehensive reviews on freshwater biodiversity, specifically. Despite the widespread awareness of risks to freshwater biodiversity, organized action to reverse this decline has been lacking. This study reviews prospective conservation and management strategies for freshwater biodiversity and their associated challenges, identifying current key threats to freshwater biodiversity. Engineered nanomaterials pose a significant threat to aquatic species, and will make controlling health risks to freshwater biodiversity increasingly challenging in the future. When fish are exposed to nanoparticles, the surface area of their respiratory and ion transport systems can decline to 60% of their total surface area, posing serious health risks. Also, about 50% of freshwater fish species are threatened by climate change, globally. Freshwater biodiversity that is heavily reliant on calcium perishes when the calcium content of their environments degrades, posing another severe threat to world biodiversity. To improve biodiversity, variables such as species diversity, population and water quality, and habitat are essential components that must be monitored continuously. Existing research on freshwater biota and ecosystems is still lacking. Therefore, data collection and the establishment of specialized policies for the conservation of freshwater biodiversity should be prioritized.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Calcio , Peces , Agua Dulce , Humanos , Estudios Prospectivos
5.
Heliyon ; 8(6): e09569, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35706936

RESUMEN

This paper explores the impacts of informal economic activities and institutional capacity, particularly, corruption control on the environmental quality degradation of emerging economies under the prevailing socio-economic conditions and energy use patterns of the countries. The study utilizes key environmental degradation indicators: Carbon dioxide (CO2) emissions, ecological footprints (EFs), and Nitrous Oxide (NO) emissions, and a panel dataset of 15 emerging countries for the period 2002-2019 to undertake an empirical investigation. The pooled mean group (PMG)-ARDL estimator, Fully Modified OLS (FMOLS), Dynamic OLS (DOLS) and Augmented Mean Group (AMG) methods have been applied as empirical investigation techniques. The empirical findings reveal that in the long-run informal economic activities positively affect the environmental quality with fewer recorded emissions of CO2 and EFs while these activities affect negatively to NO emissions. This study has also found that corruption control improves environmental quality by reducing EFs and NO emissions but works to the opposite by increasing recorded CO2 emissions. An increase in economic growth and renewable energy consumption improves environmental quality in emerging countries, while consumption of non-renewable energy degrades the environmental quality. The robust empirical findings advocate policy initiatives for intense monitoring of informal activities and implementation of indirect tax policy to regulate informal activities and the pollution they cause. Careful measures of corruption control and initiatives to bring the informal economic activities into a formal framework are suggested to reduce CO2 and NO emissions. An increase in economic growth with more focus on renewables and phasing out non-renewables can ensure green growth in emerging countries.

6.
Earth Syst Environ ; 6(2): 437-451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35578708

RESUMEN

Severe weather events such as lightning appear to be a significant threat to humans and property in South Asia, an area known for intense convective activity directly related to the tropical climate of these areas. The current study was conducted in Bangladesh and examined the association between cloud-to-ground (CG) lightning and ground surface properties, with the aim of improving existing knowledge regarding this phenomenon. GLD360 data from 2015 to 2020 were used to describe the seasonal lightning climatology. Elevation, land use and land cover, vegetation and surface heat flux data were used to examine all land surface features possibly associated with CG lightning occurrence. Hot and cold spot spatial patterning was calculated using local indicators of spatial association. Results indicated a strong CG lightning seasonality. CG stroke density varied considerably across seasons with the pre-monsoon exhibiting the highest density. This was followed by occurrences in the monsoon season. The March-June period experienced 73% of the total observed. Elevation appeared to influence the post-monsoon CG stroke, however, its role in the other seasons was more difficult to define. The land cover/lightning index indicated that waterbodies and herbaceous wetlands had more influence than other land cover types, both during the day and at night, and it appeared that latent heat flux played a major role. The CG stroke hot and cold spot locations varied diurnally. The findings suggest that large-scale irrigation practices, especially during the pre-monsoon months, can influence the observed spatiotemporal pattern. The production of hotspot maps could be an initial step in the development of a reliable lightning monitoring system and play a part in increasing public awareness of this issue. Supplementary Information: The online version contains supplementary material available at 10.1007/s41748-022-00310-4.

7.
PLoS One ; 11(2): e0148271, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26839949

RESUMEN

Report cards are increasingly used to provide ongoing snap-shots of progress towards specific ecosystem health goals, particularly in coastal regions where planners need to balance competing demands for coastal resources from a range of industries. While most previous report cards focus on the biophysical components of the system, there is a growing interest in including the social and economic implications of ecosystem management to provide a greater social-ecological system understanding. Such a report card was requested on the Gladstone Harbour area in central Queensland, Australia. Gladstone Harbour adjoins the southern Great Barrier Reef, and is also a major industrial and shipping port. Balancing social, economic and environmental interests is therefore of great concern to the regional managers. While environmental benchmarking procedures are well established within Australia (and elsewhere), a method for assessing social and economic performance of coastal management is generally lacking. The key aim of this study was to develop and pilot a system for the development of a report card relating to appropriate cultural, social and economic objectives. The approach developed uses a range of multicriteria decision analysis methods to assess and combine different qualitative and quantitative measures, including the use of Bayesian Belief Networks to combine the different measures and provide an overall quantitative score for each of the key management objectives. The approach developed is readily transferable for purposes of similar assessments in other regions.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Recolección de Datos/métodos , Informe de Investigación , Queensland
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA