Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(3): C990-C998, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314725

RESUMEN

Multiple techniques have been developed to isolate contractile smooth muscle cells (SMCs) from tissues with varying degrees of success. However, most of these approaches rely on obtaining fresh tissue, which poses logistical challenges. In the present study, we introduce a novel protocol for isolating contractile SMCs from cryopreserved smooth muscle (SM) tissue, thereby enhancing experimental efficiency. This protocol yields abundant viable, spindle-shaped, contractile SMCs that closely resemble those obtained from fresh samples. By analyzing the expression of contractile proteins, we demonstrate that both the isolated SMCs from cryopreserved tissue represent more accurately fresh SM tissue compared with cultured SMCs. Moreover, we demonstrate the importance of a brief incubation step of the tissue in culture medium before cell dissociation to achieve contractile SMCs. Finally, we provide a concise overview of our protocol optimization efforts, along with a summary of previously published methods, which could be valuable for the development of similar protocols for other species.NEW & NOTEWORTHY We report a successful protocol development for isolating contractile smooth muscle cells (SMCs) from cryopreserved tissue reducing the reliance on fresh tissues and providing a readily available source of contractile SMCs. Our findings suggest that SMCs isolated using our protocol maintain their phenotype better compared with cultured SMCs. This preservation of the cellular characteristics, including the expression of key contractile proteins, makes these cells more representative of fresh SM tissue.


Asunto(s)
Contracción Muscular , Miocitos del Músculo Liso , Miocitos del Músculo Liso/metabolismo , Músculo Liso/metabolismo , Fenotipo , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Células Cultivadas , Diferenciación Celular/genética
2.
J Gen Physiol ; 154(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36001043

RESUMEN

Smooth muscle (SM) is found in most hollow organs of the body. Phasic SM, as found in the gut, contracts to propel content, whereas tonic SM, as found in most blood vessels, maintains tension. This force maintenance is referred to as the latch state and occurs at low levels of myosin activation (myosin light chain [LC20] phosphorylation). Molecular mechanisms have been proposed to explain the latch state but have been studied only at the whole-muscle level because of technological limitations. In the current study, an assay chamber was devised to allow injection of myosin light chain phosphatase (MLCP) during laser trap and in vitro motility assays, without creating bulk flow, to reproduce latch state conditions at the molecular level. Using the laser trap in a single-beam mode, an actin filament was brought in contact with several myosin molecules on a pedestal. Myosin pulled on the actin filament until a plateau force was reached, at which point, MLCP was injected. Force maintenance was observed during LC20 dephosphorylation, the level of which was assessed in a parallel in vitro motility assay performed in the same conditions. Force was maintained longer for myosin purified from tonic SM than from phasic SM. These data support the longstanding dogma of strong bonds caused by dephosphorylated, noncycling cross-bridges. Furthermore, MLCP injection in an in vitro motility mixture assay performed with SM and skeletal muscle myosin suggests that the maintenance of these strong bonds is possible only if no energy is provided by surrounding actively cycling myosin molecules.


Asunto(s)
Músculo Liso , Miosinas del Músculo Liso , Contracción Muscular , Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Miosinas del Músculo Liso/metabolismo
3.
Eur Respir J ; 56(1)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32299863

RESUMEN

Constriction of airways during asthmatic exacerbation is the result of airway smooth muscle (ASM) contraction. Although it is generally accepted that ASM is hypercontractile in asthma, this has not been unambiguously demonstrated. Whether airway hyperresponsiveness (AHR) is the result of increased ASM mass alone or also increased contractile force generation per unit of muscle directly determines the potential avenues for treatment.To assess whether ASM is hypercontractile we performed a series of mechanics measurements on isolated ASM from intrapulmonary airways and trachealis from human lungs. We analysed the ASM and whole airway proteomes to verify if proteomic shifts contribute to changes in ASM properties.We report an increase in isolated ASM contractile stress and stiffness specific to asthmatic human intrapulmonary bronchi, the site of increased airway resistance in asthma. Other contractile parameters were not altered. Principal component analysis (PCA) of unbiased mass spectrometry data showed clear clustering of asthmatic subjects with respect to ASM specific proteins. The whole airway proteome showed upregulation of structural proteins. We did not find any evidence for a difference in the regulation of myosin activity in the asthmatic ASM.In conclusion, we showed that ASM is indeed hyperreactive at the level of intrapulmonary airways in asthma. We identified several proteins that are upregulated in asthma that could contribute to hyperreactivity. Our data also suggest enhanced force transmission associated with enrichment of structural proteins in the whole airway. These findings may lead to novel directions for treatment development in asthma.


Asunto(s)
Asma , Proteoma , Bronquios , Humanos , Contracción Muscular , Músculo Liso , Proteómica
4.
Am J Respir Cell Mol Biol ; 60(4): 434-444, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30359078

RESUMEN

Cystic fibrosis (CF) is an autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Many patients with CF have asthma-like symptoms and airway hyperresponsiveness, which are potentially associated with altered airway smooth muscle (ASM) contractility. Our goal in this study was to assess the contractility of the CF intrapulmonary ASM. ASM strips were dissected from human control and CF intrapulmonary airways, and assessed for methacholine-induced shortening velocity, maximal force, and stress. We also assessed isoproterenol responses in maximally methacholine-contracted ASM. ASM strips were then incubated for 16 hours with IL-13 and measurements were repeated. Myosin light chain kinase (MLCK) expression was assessed by Western blotting. Airways were immunostained for morphometry. ASM mass was increased in CF airways, which likely contributes to airway hyperresponsiveness. Although ASM contractile properties were not intrinsically different between patients with CF and control subjects, CF ASM responded differently in the presence of the inflammatory mediator IL-13, showing impairment in ß-adrenergic-induced relaxation. Indeed, the percentage of relaxation measured at maximal isoproterenol concentrations in the CF ASM was significantly lower after incubation with IL-13 (46.0% ± 6.7% relaxation) than without IL-13 (74.0% ± 7.7% relaxation, P = 0.018). It was also significantly lower than that observed in control ASM incubated with IL-13 (68.8% ± 4.9% relaxation, P = 0.048) and without IL-13 (82.4% ± 9.9%, P = 0.0035). CF ASM incubated with IL-13 also expressed greater levels of MLCK. Thus, our data suggest that the combination of an increase in ASM mass, increased MLCK expression, and inflammation-induced ß-adrenergic hyporesponsiveness may contribute to airway dysfunction in CF.


Asunto(s)
Asma/patología , Fibrosis Quística/patología , Contracción Muscular/fisiología , Músculo Liso/patología , Hipersensibilidad Respiratoria/patología , Adulto , Broncoconstrictores/farmacología , Broncodilatadores/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Humanos , Interleucina-13/farmacología , Isoproterenol/farmacología , Masculino , Cloruro de Metacolina/farmacología , Persona de Mediana Edad , Quinasa de Cadena Ligera de Miosina/biosíntesis , Sistema Respiratorio/patología , Adulto Joven
5.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L724-L733, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30091377

RESUMEN

Isolated human airway smooth muscle (ASM) tissue contractility studies are essential for understanding the role of ASM in respiratory disease, but limited availability and cost render storage options necessary for optimal use. However, to our knowledge, no comprehensive study of cryopreservation protocols for isolated ASM has been performed to date. We tested several cryostorage protocols on equine trachealis ASM using different cryostorage media [1.8 M dimethyl sulfoxide and fetal bovine serum (FBS) or Krebs-Henseleit (KH)] and different degrees of dissection (with or without epithelium and connective tissues attached) before storage. We measured methacholine (MCh), histamine, and isoproterenol (Iso) dose-responses and electrical field stimulation (EFS) and MCh force-velocity curves. We confirmed our findings in human trachealis ASM stored undissected in FBS. Maximal stress response to MCh was decreased more in dissected than undissected equine tissues. EFS force was decreased in all equine but not in human cryostored tissues. Furthermore, in human cryostored tissues, EFS maximal shortening velocity was decreased, and Iso response was potentiated after cryostorage. Overnight incubation with 0.5 or 10% FBS did not recover contractility in the equine tissues but potentiated Iso response. Overnight incubation with 10% FBS in human tissues showed maximal stress recovery and maintenance of other contractile parameters. ASM tissues can be cryostored while maintaining most contractile function. We propose an optimal protocol for cryostorage of ASM as undissected tissues in FBS or KH solution followed by dissection of the ASM bundles and a 24-h incubation with 10% FBS before mechanics measurements.


Asunto(s)
Criopreservación/métodos , Crioprotectores/química , Contracción Muscular/fisiología , Músculo Liso/fisiología , Tráquea/fisiología , Animales , Dimetilsulfóxido/química , Histamina/química , Caballos , Cloruro de Metacolina/química , Músculo Liso/citología , Tráquea/citología
6.
Am J Respir Cell Mol Biol ; 54(5): 718-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26473389

RESUMEN

Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation.


Asunto(s)
Asma/fisiopatología , Enfermedades de los Caballos/fisiopatología , Contracción Muscular/fisiología , Músculo Liso/fisiopatología , Tráquea/fisiopatología , Citoesqueleto de Actina/metabolismo , Animales , Western Blotting , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Proteínas Contráctiles/metabolismo , Modelos Animales de Enfermedad , Femenino , Caballos , Masculino , Cloruro de Metacolina , Miofibrillas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Mecánica Respiratoria/fisiología
7.
Am J Respir Crit Care Med ; 191(8): 884-93, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25695616

RESUMEN

RATIONALE: Airway smooth muscle (ASM) plays a key role in airway hyperresponsiveness (AHR) but it is unclear whether its contractility is intrinsically changed in asthma. OBJECTIVES: To investigate whether key parameters of ASM contractility are altered in subjects with asthma. METHODS: Human trachea and main bronchi were dissected free of epithelium and connective tissues and suspended in a force-length measurement set-up. After equilibration each tissue underwent a series of protocols to assess its methacholine dose-response relationship, shortening velocity, and response to length oscillations equivalent to tidal breathing and deep inspirations. MEASUREMENTS AND MAIN RESULTS: Main bronchi and tracheal ASM were significantly hyposensitive in subjects with asthma compared with control subjects. Trachea and main bronchi did not show significant differences in reactivity to methacholine and unloaded tissue shortening velocity (Vmax) compared with control subjects. There were no significant differences in responses to deep inspiration, with or without superimposed tidal breathing oscillations. No significant correlations were found between age, body mass index, or sex and sensitivity, reactivity, or Vmax. CONCLUSIONS: Our data show that, in contrast to some animal models of AHR, human tracheal and main bronchial smooth muscle contractility is not increased in asthma. Specifically, our results indicate that it is highly unlikely that ASM half-maximum effective concentration (EC50) or Vmax contribute to AHR in asthma, but, because of high variability, we cannot conclude whether or not asthmatic ASM is hyperreactive.


Asunto(s)
Asma/fisiopatología , Bronquios/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Tráquea/fisiología , Adulto , Anciano , Hiperreactividad Bronquial/fisiopatología , Femenino , Humanos , Masculino , Cloruro de Metacolina , Persona de Mediana Edad , Adulto Joven
8.
Biochim Biophys Acta ; 1840(11): 3218-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25108062

RESUMEN

BACKGROUND: Studies conducted at the whole muscle level have shown that smooth muscle can maintain tension with low Adenosine triphosphate (ATP) consumption. Whereas it is generally accepted that this property (latch-state) is a consequence of the dephosphorylation of myosin during its attachment to actin, free dephosphorylated myosin can also bind to actin and contribute to force maintenance. We investigated the role of caldesmon (CaD) in regulating the binding force of unphosphorylated tonic smooth muscle myosin to actin. METHODS: To measure the effect of CaD on the binding of unphosphorylated myosin to actin (in the presence of ATP), we used a single beam laser trap assay to quantify the average unbinding force (Funb) in the absence or presence of caldesmon, extracellular signal-regulated kinase (ERK)-phosphorylated CaD, or CaD plus tropomyosin. RESULTS: Funb from unregulated actin (0.10±0.01pN) was significantly increased in the presence of CaD (0.17±0.02pN), tropomyosin (0.17±0.02pN) or both regulatory proteins (0.18±0.02pN). ERK phosphorylation of CaD significantly reduced the Funb (0.06±0.01pN). Inspection of the traces of the Funb as a function of time suggests that ERK phosphorylation of CaD decreases the binding force of myosin to actin or accelerates its detachment. CONCLUSIONS: CaD enhances the binding force of unphosphorylated myosin to actin potentially contributing to the latch-state. ERK phosphorylation of CaD decreases this binding force to very low levels. GENERAL SIGNIFICANCE: This study suggests a mechanism that likely contributes to the latch-state and that explains the muscle relaxation from the latch-state.

9.
J Physiol ; 592(14): 2999-3012, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24687581

RESUMEN

Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Tráquea/fisiología , Animales , Técnicas de Cocultivo , Proteínas Contráctiles/fisiología , Masculino , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Ovalbúmina/farmacología , Ratas Endogámicas BN , Bazo/citología
10.
Biochim Biophys Acta ; 1830(10): 4634-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23747303

RESUMEN

BACKGROUND: Smooth muscle has the distinctive ability to maintain force for long periods of time and at low energy costs. While it is generally agreed that this property, called the latch-state, is due to the dephosphorylation of myosin while attached to actin, dephosphorylated-detached myosin can also attach to actin and may contribute to force maintenance. Thus, we investigated the role of calponin in regulating and enhancing the binding force of unphosphorylated tonic muscle myosin to actin. METHODS: To measure the effect of calponin on the binding of unphosphorylated myosin to actin, we used the laser trap assay to quantify the average force of unbinding (Funb) in the absence and presence of calponin or phosphorylated calponin. RESULTS: Funb from F-actin alone (0.12±0.01pN; mean±SE) was significantly increased in the presence of calponin (0.20±0.02pN). This enhancement was lost when calponin was phosphorylated (0.12±0.01pN). To further verify that this enhancement of Funb was due to the cross-linking of actin to myosin by calponin, we repeated the measurements at high ionic strength. Indeed, the Funb obtained at a [KCl] of 25mM (0.21±0.02pN; mean±SE) was significantly decreased at a [KCl] of 150mM, (0.13±0.01pN). CONCLUSIONS: This study provides direct molecular level-evidence that calponin enhances the binding force of unphosphorylated myosin to actin by cross-linking them and that this is reversed upon calponin phosphorylation. Thus, calponin might play an important role in the latch-state. GENERAL SIGNIFICANCE: This study suggests a new mechanism that likely contributes to the latch-state, a fundamental and important property of smooth muscle that remains unresolved.


Asunto(s)
Actinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Miosinas/metabolismo , Animales , Western Blotting , Microesferas , Fosforilación , Unión Proteica , Porcinos , Calponinas
11.
Biochim Biophys Acta ; 1830(3): 2710-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23671932

RESUMEN

BACKGROUND: There is evidence that the actin-activated ATP kinetics and the mechanical work produced by muscle myosin molecules are regulated by two surface loops, located near the ATP binding pocket (loop 1), and in a region that interfaces with actin (loop 2). These loops regulate force and velocity of contraction, and have been investigated mostly in single molecules. There is a lack of information of the work produced by myosin molecules ordered in filaments and working cooperatively, which is the actual muscle environment. METHODS: We use micro-fabricated cantilevers to measure forces produced by myosin filaments isolated from mollusk muscles, skeletal muscles, and smooth muscles containing variations in the structure of loop 1 (tonic and phasic myosins). We complemented the experiments with in-vitro assays to measure the velocity of actin motility. RESULTS: Smooth muscle myosin filaments produced more force than skeletal and mollusk myosin filaments when normalized per filament overlap. Skeletal muscle myosin propelled actin filaments in a higher sliding velocity than smooth muscle myosin. The values for force and velocity were consistent with previous studies using myosin molecules, and suggest a close correlation with the myosin isoform and structure of surface loop 1. GENERAL SIGNIFICANCE: The technique using micro-fabricated cantilevers to measure force of filaments allows for the investigation of the relation between myosin structure and contractility, allowing experiments to be conducted with an array of different myosin isoforms. Using the technique we observed that the work produced by myosin molecules is regulated by amino-acid sequences aligned in specific loops.


Asunto(s)
Citoesqueleto de Actina/química , Actomiosina/química , Adenosina Trifosfato/química , Microtecnología/instrumentación , Músculo Liso/química , Miosinas/química , Animales , Fenómenos Biomecánicos , Bivalvos , Pollos , Microscopía Electrónica de Rastreo , Microtecnología/métodos , Polimerizacion , Isoformas de Proteínas/química , Conejos , Porcinos , Pavos
12.
Am J Physiol Cell Physiol ; 304(9): C873-80, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23426972

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal disorder caused by defects in the dystrophin gene, which leads to respiratory or cardiac muscle failure. Lack of dystrophin predisposes the muscle cell sarcolemmal membrane to mechanical damage. However, the role of myosin in this muscle weakness has been poorly addressed. In the current study, in addition to measuring the velocity of actin filament propulsion (υmax) of mdx myosin molecules purified from 3- and 12-mo-old control (C57Bl/10) and mdx (C57Bl/10mdx) mouse diaphragms, we also measured myosin force production. Furthermore, we measured cellular and muscle strip force production at three mo of age. Stress (force/cross-sectional area) was smaller for mdx than control at the muscle strip level but was not different at the single fiber level. υmax of mdx myosin was not different from control at either 3 or 12 mo nor was their relative myosin force. The type I and IIb myosin heavy chain composition was not different between control and mdx diaphragms at 3 or 12 mo. These results suggest that the myosin function, as well as the single fiber mechanics, do not underlie the weakness of the mdx diaphragm. This weakness was only observed at the level of the intact muscle bundle and could not be narrowed down to a specific mechanical impairment of its individual fibers or myosin molecules.


Asunto(s)
Diafragma/fisiopatología , Miosinas/fisiología , Animales , Fenómenos Biomecánicos , Técnicas In Vitro , Contracción Isométrica , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/fisiología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Miosinas/química , Proteolisis
13.
Biochim Biophys Acta ; 1830(3): 2710-2719, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23220701

RESUMEN

BACKGROUND: There is evidence that the actin-activated ATP kinetics and the mechanical work produced by muscle myosin molecules are regulated by two surface loops, located near the ATP binding pocket (loop 1), and in a region that interfaces with actin (loop 2). These loops regulate force and velocity of contraction, and have been investigated mostly in single molecules. There is a lack of information of the work produced by myosin molecules ordered in filaments and working cooperatively, which is the actual muscle environment. METHODS: We use micro-fabricated cantilevers to measure forces produced by myosin filaments isolated from mollusk muscles, skeletal muscles, and smooth muscles containing variations in the structure of loop 1 (tonic and phasic myosins). We complemented the experiments with in-vitro assays to measure the velocity of actin motility. RESULTS: Smooth muscle myosin filaments produced more force than skeletal and mollusk myosin filaments when normalized per filament overlap. Skeletal muscle myosin propelled actin filaments in a higher sliding velocity than smooth muscle myosin. The values for force and velocity were consistent with previous studies using myosin molecules, and suggest a close correlation with the myosin isoform and structure of surface loop 1. GENERAL SIGNIFICANCE: The technique using micro-fabricated cantilevers to measure force of filaments allows for the investigation of the relation between myosin structure and contractility, allowing experiments to be conducted with an array of different myosin isoforms. Using the technique we observed that the work produced by myosin molecules is regulated by amino-acid sequences aligned in specific loops.

14.
Am J Respir Crit Care Med ; 179(3): 194-204, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19011151

RESUMEN

RATIONALE: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. OBJECTIVES: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. METHODS: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. MEASUREMENTS AND MAIN RESULTS: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. CONCLUSIONS: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma.


Asunto(s)
Asma/metabolismo , Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Músculo Liso/metabolismo , Cadenas Pesadas de Miosina/genética , Quinasa de Cadena Ligera de Miosina/genética , ARN Mensajero/genética , Adolescente , Animales , Asma/genética , Asma/patología , Biopsia , Western Blotting , Broncoscopía , Electroforesis en Gel de Poliacrilamida , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Masculino , Proteínas de Microfilamentos/biosíntesis , Proteínas Musculares/biosíntesis , Músculo Liso/patología , Cadenas Pesadas de Miosina/biosíntesis , Quinasa de Cadena Ligera de Miosina/biosíntesis , Reacción en Cadena de la Polimerasa , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Proteínas de Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...