Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Mol Diagn ; 26(6): 530-541, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575066

RESUMEN

Precision medicine relies on accurate and consistent classification of sequence variants. A correct diagnosis of hepatocyte nuclear factor (HNF) 1B maturity-onset diabetes of the young, caused by pathogenic variants in the HNF1B gene, is important for optimal disease management and prognosis, and it has implications for genetic counseling and follow-up of at-risk family members. We hypothesized that the functional characterization could provide valuable information to assist the interpretation of pathogenicity of HNF1B variants. Using different in vitro functional assays, variants identified among 313 individuals, suspected to have monogenic diabetes with or without kidney disease, were characterized. The data from the functional assays were subsequently conjugated with obtained clinical, biochemical, and in silico data. Two variants (p.A167P, p.H336Pfs∗22) showed severe loss of function due to impaired transactivation, reduced DNA binding (p.A167P), and mRNA instability (p.A167P). Although both these variant carriers were diagnosed with diabetes, the p.H336Pfs∗22 carrier also had congenital absence of a kidney, which is a characteristic trait for HNF1B maturity-onset diabetes of the young. Functional analysis of the p.A167P variant revealed damaging effects on HNF-1B protein function, which may warrant imaging of the kidneys and/or pancreas. In addition, the current study has generated important data, including evidence supporting the benign functional impact of five variants (p.D82N, p.T88A, p.N394D, p.V458G, and p.T544A), and piloting new approaches that will prove critical for the growth of HNF1B-diabetes diagnosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 1-beta del Hepatocito , Humanos , Factor Nuclear 1-beta del Hepatocito/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Femenino , Masculino , Adulto , Medicina de Precisión/métodos , Mutación , Adolescente , Persona de Mediana Edad , Adulto Joven
2.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433330

RESUMEN

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 4 del Hepatocito , Regiones Promotoras Genéticas , Activación Transcripcional , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Activación Transcripcional/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Variación Genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Línea Celular
3.
Diabetologia ; 66(12): 2226-2237, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37798422

RESUMEN

AIMS/HYPOTHESIS: Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS: We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS: In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION: Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Niño , Proyectos Piloto , Diabetes Mellitus Tipo 2/metabolismo , Fenotipo , Autoanticuerpos/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Noruega/epidemiología , Compuestos de Sulfonilurea , Mutación
4.
Front Microbiol ; 14: 1171913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485526

RESUMEN

Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen, yet the epidemiology and population genetics of SDSE species have not been extensively characterized. Methods: We carried out whole genome sequencing to characterize 274 SDSE isolates causing bloodstream infections obtained through national surveillance program in 2018. We conducted multilocus sequence typing (MLST), emm-typing, core genome phylogeny, as well as investigated key features associated with virulence. Moreover, comparison to SDSE from other geographic regions were performed in order to gain more insight in the evolutionary dynamics in SDSE. Results: The phylogenetic analysis indicated a substantial diversity of emm-types and sequence types (STs). Briefly, 17 emm-types and 58 STs were identified that formed 10 clonal complexes (CCs). The predominant ST-types were ST20 (20%), ST17 (17%), and ST29 (11%). While CC17 and CC29 clades showed a substantial heterogeneity with well-separated emm-associated subclades, the CC20 clade harboring the stG62647 emm-type was more homogenous and the most prevalent in the present study. Moreover, we observed notable differences in the distribution of clades within Norway, as well as several disseminated CCs and also distinct geographic variations when compared to data from other countries. We also revealed extensive intra-species recombination events involving surface exposed virulence factors, including the emm gene important for phylogenetic profiling. Conclusion: Recombination events involving the emm as well as other virulence genes in SDSE, are important mechanisms in shaping the genetic variability in the SDSE population, potentially offering selective advantages to certain lineages. The enhanced phylogenetic resolution offered by whole genome sequencing is necessary to identify and delimitate outbreaks, monitor and properly characterize emerging strains, as well as elucidate bacterial population dynamics.

5.
Lancet Reg Health Eur ; 24: 100529, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36649380

RESUMEN

Background: The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods: Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings: We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (ß = -232 pmol/L, ßSD = -0.695, P = 4.43 × 10-4) and higher 30-min glucose (ß = 1.20 mmol/L, ßSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10-6) and HbA1c (ß = 0.113 HbA1c%, ßSD = 0.205, P = 7.84 × 10-3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation: The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1-3% in large populations. Funding: Novo Nordisk Foundation, Independent Research Fund Denmark, and Karen Elise Jensen's Foundation.

6.
Am J Hum Genet ; 107(4): 670-682, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910913

RESUMEN

Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Factor Nuclear 1-alfa del Hepatocito/genética , Mutación Missense , Sistema de Registros , Aprendizaje Automático no Supervisado , Adolescente , Adulto , Alelos , Niño , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/patología , Femenino , Expresión Génica , Humanos , Masculino , Noruega/epidemiología , Fenotipo , Análisis de Componente Principal , Reino Unido/epidemiología , Secuenciación del Exoma , Adulto Joven
7.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32017842

RESUMEN

CONTEXT: While rare variants of the hepatocyte nuclear factor-1 alpha (HNF1A) gene can cause maturity-onset diabetes of the young (HNF1A-MODY), other variants can be risk factors for the development of type 2 diabetes. As has been suggested by the American College of Medical Genetics (ACMG) guidelines for variant interpretation, functional studies provide strong evidence to classify a variant as pathogenic. OBJECTIVE: We hypothesized that a functional evaluation can improve the interpretation of the HNF1A variants in our Czech MODY Registry. DESIGN, SETTINGS, AND PARTICIPANTS: We studied 17 HNF1A variants that were identified in 48 individuals (33 female/15 male) from 20 Czech families with diabetes, using bioinformatics in silico tools and functional protein analyses (transactivation, protein expression, DNA binding, and nuclear localization). RESULTS: Of the 17 variants, 12 variants (p.Lys120Glu, p.Gln130Glu, p.Arg131Pro, p.Leu139Pro, p.Met154Ile, p.Gln170Ter, p.Glu187SerfsTer40, p.Phe215SerfsTer18, p.Gly253Arg, p.Leu383ArgfsTer3, p.Gly437Val, and p.Thr563HisfsTer85) exhibited significantly reduced transcriptional activity or DNA binding (< 40%) and were classified as (likely) pathogenic, 2/17 variants were (likely) benign and 3/17 remained of uncertain significance. Functional analyses allowed for the reclassification of 10/17 variants (59%). Diabetes treatment was improved in 20/29 (69%) carriers of (likely) pathogenic HNF1A variants. CONCLUSION: Functional evaluation of the HNF1A variants is necessary to better predict the pathogenic effects and to improve the diagnostic interpretation and treatment, particularly in cases where the cosegregation or family history data are not available or where the phenotype is more diverse and overlaps with other types of diabetes.


Asunto(s)
Biomarcadores/análisis , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Factor Nuclear 1-alfa del Hepatocito/genética , Mutación , Adulto , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Fenotipo , Pronóstico
8.
Sci Rep ; 8(1): 12780, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143652

RESUMEN

The transcription factor hepatocyte nuclear factor-1α (HNF-1A) is involved in normal pancreas development and function. Rare variants in the HNF1A gene can cause monogenic diabetes, while common variants confer type 2 diabetes risk. The precise mechanisms for regulation of HNF-1A, including the role and function of post-translational modifications, are still largely unknown. Here, we present the first evidence for HNF-1A being a substrate of SUMOylation in cellulo and identify two lysine (K) residues (K205 and K273) as SUMOylation sites. Overexpression of protein inhibitor of activated STAT (PIASγ) represses the transcriptional activity of HNF-1A and is dependent on simultaneous HNF-1A SUMOylation at K205 and K273. Moreover, PIASγ is a novel HNF-1A interaction partner whose expression leads to translocation of HNF-1A to the nuclear periphery. Thus, our findings support that the E3 SUMO ligase PIASγ regulates HNF-1A SUMOylation with functional implications, representing new targets for drug development and precision medicine in diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Factor Nuclear 1-alfa del Hepatocito/química , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Lisina/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Ratas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...