Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(22): 8925-8931, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36343206

RESUMEN

In the pursuit of magneto-electronic systems nonstoichiometric magnetic elements commonly introduce disorder and enhance magnetic scattering. We demonstrate the growth of (EuIn)As shells, with a unique crystal structure comprised of a dense net of Eu inversion planes, over InAs and InAs1-xSbx core nanowires. This is imaged with atomic and elemental resolution which reveal a prismatic configuration of the Eu planes. The results are supported by molecular dynamics simulations. Local magnetic and susceptibility mappings show magnetic response in all nanowires, while a subset bearing a DC signal points to ferromagnetic order. These provide a mechanism for enhancing Zeeman responses, operational at zero applied magnetic field. Such properties suggest that the obtained structures can serve as a preferred platform for time-reversal symmetry broken one-dimensional states including intrinsic topological superconductivity.

2.
Nano Lett ; 21(24): 10215-10221, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34882412

RESUMEN

The cross-sectional dimensions of nanowires set the quantization conditions for the electronic subbands they host. These can be used as a platform to realize one-dimesional topological superconductivity. Here we develop a protocol that forces such nanowires to kink and change their growth direction. Consequently, a thin rectangular nanoplate is formed, which gradually converges into a very thin square tip. We characterize the resulting tapered nanowires structurally and spectroscopically by scanning and transmission electron microscopy and scanning tunneling microscopy and spectroscopy and model their growth. A unique structure composed of ordered rows of atoms on the (110) facet of the nanoflag is further revealed by atomically resolved topography and modeled by simulations. We discuss possible advantages tapered InAs nanowires offer for Majorana zero-mode realization and manipulation.

3.
Nano Lett ; 18(7): 4115-4122, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29879360

RESUMEN

We study the role of gold droplets in the initial stage of nanowire growth via the vapor-liquid-solid method. Apart from serving as a collections center for growth species, the gold droplets carry an additional crucial role that necessarily precedes the nanowire emergence, that is, they assist the nucleation of nanocraters with strongly faceted {111}B side walls. Only once these facets become sufficiently large and regular, the gold droplets start nucleating and guiding the growth of nanowires. We show that this dual role of the gold droplets can be detected and monitored by high-energy electron diffraction during growth. Moreover, gold-induced formation of craters and the onset of nanowires growth on the {111}B facets inside the craters are confirmed by the results of Monte Carlo simulations. The detailed insight into the growth mechanism of inclined nanowires will help to engineer new and complex nanowire-based device architectures.

4.
Nano Lett ; 17(12): 7520-7527, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29115842

RESUMEN

It was recently shown that in situ epitaxial aluminum coating of indium arsenide nanowires is possible and yields superior properties relative to ex-situ evaporation of aluminum ( Nat. Mater. 2015 , 14 , 400 - 406 ). We demonstrate a robust and adaptive epitaxial growth protocol satisfying the need for producing an intimate contact between the aluminum superconductor and the indium arsenide nanowire. We show that the (001) indium arsenide substrate allows successful aluminum side-coating of reclined indium arsenide nanowires that emerge from (111)B microfacets. A robust, induced hard superconducting gap in the obtained indium arsenide/aluminum core/partial shell nanowires is clearly demonstrated. We compare epitaxial side-coating of round and hexagonal cross-section nanowires and find the surface roughness of the round nanowires to induce a more uniform aluminum profile. Consequently, the extended aluminum grains result in increased strain at the interface with the indium arsenide nanowire, which is found to induce dislocations penetrating into round nanowires only. A unique feature of proposed growth protocol is that it supports in situ epitaxial deposition of aluminum on all three arms of indium arsenide nanowire intersections in a single growth step. Such aluminum coated intersections play a key role in engineering topologically superconducting networks required for Majorana based quantum computation schemes.

5.
Adv Mater ; 29(3)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27859857

RESUMEN

The topological properties of lead-tin chalcogenide topological crystalline insulators can be widely tuned by temperature and composition. It is shown that bulk Bi doping of epitaxial Pb1-x Snx Te (111) films induces a giant Rashba splitting at the surface that can be tuned by the doping level. Tight binding calculations identify their origin as Fermi level pinning by trap states at the surface.

6.
Nano Lett ; 17(1): 531-537, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28002676

RESUMEN

The prediction that Majorana Fermions obey nonabelian exchange statistics can only be tested by interchanging such carriers in "Y'- or 'X'- (or 'K'-) shaped nanowire networks. Here we report the molecular beam epitaxy (MBE) growth of 'K'-shaped InAs nanowires consisting of two interconnected wurtzite wires with an additional zinc-blende wire in between. Moreover, occasionally, the growth results in formation of a purely wurtzite two-dimensional plate between the zinc-blende nanowire and one (sometimes both) intersecting wurtzite arm. By modeling the crystal structure we explain the transformation from wurtzite to zinc-blende and the coexistence of both crystallographic phases in such nanowire structures. To the best of our knowledge neither the MBE growth of an InAs nano-object showing combination of wurtzite and zinc-blende crystal structures nor the growth of pure wurtzite InAs nanoplates in this geometry has been reported before.

7.
Nano Lett ; 13(11): 5190-6, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24093328

RESUMEN

Molecular beam epitaxy growth of merging InAs nanowire intersections, that is, a first step toward the realization of a network of such nanowires, is reported. While InAs nanowires play already a leading role in the search for Majorana fermions, a network of these nanowires is expected to promote their exchange and allow for further development of this field. The structural properties of merged InAs nanowire intersections have been investigated using scanning and transmission electron microscope imaging. At the heart of the intersection, a sharp change of the crystal structure from wurtzite to perfect zinc blende is observed. The performed low-temperature conductance measurements demonstrate that the intersection does not impose an obstacle to current transport.

8.
Nano Lett ; 11(8): 3319-23, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21770435

RESUMEN

The electronic and magnetic properties of (Ga,Mn)As and (In,Mn)As nanowires are studied by ab initio methods. The results suggest that, in contrast to the bulk, in nanowires (In,Mn)As may exhibit better ferromagnetic behavior than (Ga,Mn)As. Moreover, the calculations show that in one-dimensional diluted magnetic semiconductors the distribution of Mn ions and the magnetic order depend crucially on the crystallographic structure. Since the growth of III-V nanowires of a given, either zinc blende or wurtzite, crystal structure is nowadays well controlled, these results can help to find the preferable material and conditions for the growth of ferromagnetic semiconductor nanowires.

9.
Nanoscale Res Lett ; 6(1): 126, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21711649

RESUMEN

In this article, the authors reported a theoretical study of structural and electronic properties of PbTe inclusions in CdTe matrix as well as CdTe nano-clusters in PbTe matrix. The structural properties are studied by ab initio methods. A tight-binding model is constructed to calculate the electron density of states (DOS) of the systems. In contrast to the ab initio methods, the latter allows studying nanostructures with diameters comparable to the real ones. The calculations show that both kinds of inclusions lead to changes of the DOS of the carriers near the Fermi level, which may affect optical, electrical and thermoelectric properties of the material. These changes depend on the size, shape, and concentration of inclusions.

10.
Nano Lett ; 9(4): 1506-10, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19253998

RESUMEN

The growth of wurtzite GaAs and InAs nanowires with diameters of a few tens of nanometers with negligible intermixing of zinc blende stacking is reported. The suppression of the number of stacking faults was obtained by a procedure within the vapor-liquid-solid growth, which exploits the theoretical result that nanowires of small diameter ( approximately 10 nm) adopt purely wurtzite structure and are observed to thicken (via lateral growth) once the axial growth exceeds a certain length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA