Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760562

RESUMEN

The advent of massively parallel sequencing revealed extensive transcription beyond protein-coding genes, identifying tens of thousands of long noncoding RNAs (lncRNAs). Selected functional examples raised the possibility that lncRNAs, as a class, may maintain broad regulatory roles. Expression of lncRNAs is strongly linked with adjacent protein-coding gene expression, suggesting potential cis-regulatory functions. A more detailed understanding of these regulatory roles may be obtained through careful examination of the precise timing of lncRNA expression relative to adjacent protein-coding genes. Despite the diversity of reported lncRNA regulatory mechanisms, where causal cis-regulatory relationships exist, lncRNA transcription is expected to precede changes in target gene expression. Using a high temporal resolution RNA-seq time course, we profiled the expression dynamics of several thousand lncRNAs and protein-coding genes in synchronized, transitioning human cells. Our findings reveal that lncRNAs are expressed synchronously with adjacent protein-coding genes. Analysis of lipopolysaccharide-activated mouse dendritic cells revealed the same temporal relationship observed in transitioning human cells. Our findings suggest broad-scale cis-regulatory roles for lncRNAs are not common. The strong association between lncRNAs and adjacent genes may instead indicate an origin as transcriptional by-products from active protein-coding gene promoters and enhancers.

2.
Front Immunol ; 13: 811525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464428

RESUMEN

Women with autoimmune and inflammatory aetiologies can exhibit reduced fecundity. TNFAIP3 is a master negative regulator of inflammation, and has been linked to many inflammatory conditions by genome wide associations studies, however its role in fertility remains unknown. Here we show that mice harbouring a mild Tnfaip3 reduction-of-function coding variant (Tnfaip3I325N) that reduces the threshold for inflammatory NF-κB activation, exhibit reduced fecundity. Sub-fertility in Tnfaip3I325N mice is associated with irregular estrous cycling, low numbers of ovarian secondary follicles, impaired mammary gland development and insulin resistance. These pathological features are associated with infertility in human subjects. Transplantation of Tnfaip3I325N ovaries, mammary glands or pancreatic islets into wild-type recipients rescued estrous cycling, mammary branching and hyperinsulinemia respectively, pointing towards a cell-extrinsic hormonal mechanism. Examination of hypothalamic brain sections revealed increased levels of microglial activation with reduced levels of luteinizing hormone. TNFAIP3 coding variants may offer one contributing mechanism for the cause of sub-fertility observed across otherwise healthy populations as well as for the wide variety of auto-inflammatory conditions to which TNFAIP3 is associated. Further, TNFAIP3 represents a molecular mechanism that links heightened immunity with neuronal inflammatory homeostasis. These data also highlight that tuning-up immunity with TNFAIP3 comes with the potentially evolutionary significant trade-off of reduced fertility.


Asunto(s)
Infertilidad Femenina , Animales , Femenino , Regulación de la Expresión Génica , Humanos , Infertilidad Femenina/genética , Inflamación/genética , Ratones , Transducción de Señal , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética
3.
Genome Res ; 31(10): 1913-1926, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34548323

RESUMEN

The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Pronóstico , Microambiente Tumoral
4.
Cell Rep ; 36(12): 109722, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551299

RESUMEN

DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.


Asunto(s)
Metilación de ADN , Momento de Replicación del ADN/fisiología , Genoma Humano , Línea Celular Tumoral , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Bases de Datos Genéticas , Expresión Génica , Histonas/metabolismo , Humanos , Análisis de Secuencia de ADN/métodos
5.
Nat Genet ; 53(9): 1334-1347, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493872

RESUMEN

Breast cancers are complex cellular ecosystems where heterotypic interactions play central roles in disease progression and response to therapy. However, our knowledge of their cellular composition and organization is limited. Here we present a single-cell and spatially resolved transcriptomics analysis of human breast cancers. We developed a single-cell method of intrinsic subtype classification (SCSubtype) to reveal recurrent neoplastic cell heterogeneity. Immunophenotyping using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) provides high-resolution immune profiles, including new PD-L1/PD-L2+ macrophage populations associated with clinical outcome. Mesenchymal cells displayed diverse functions and cell-surface protein expression through differentiation within three major lineages. Stromal-immune niches were spatially organized in tumors, offering insights into antitumor immune regulation. Using single-cell signatures, we deconvoluted large breast cancer cohorts to stratify them into nine clusters, termed 'ecotypes', with unique cellular compositions and clinical outcomes. This study provides a comprehensive transcriptional atlas of the cellular architecture of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Análisis de la Célula Individual , Transcriptoma/genética , Linfocitos B/inmunología , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Células Endoteliales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Macrófagos/citología , Macrófagos/inmunología , Proteínas de la Membrana/genética , Células Mieloides/inmunología , Células Mieloides/metabolismo , Análisis de Secuencia de ARN , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética
6.
RNA Biol ; 18(11): 1905-1919, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33499731

RESUMEN

RNA modifications are dynamic chemical entities that expand the RNA lexicon and regulate RNA fate. The most abundant modification present in mRNAs, N6-methyladenosine (m6A), has been implicated in neurogenesis and memory formation. However, whether additional RNA modifications may be playing a role in neuronal functions and in response to environmental queues is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m2,2G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNAAla(AGC) isodecoders at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes may play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.


Asunto(s)
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Neuroblastoma/patología , Neuronas/metabolismo , Fracciones Subcelulares/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Femenino , Ratones , Ratones Noqueados , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas/citología , ARNt Metiltransferasas/genética
7.
Genomics Proteomics Bioinformatics ; 19(2): 223-242, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33307245

RESUMEN

Human pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of diseases associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate time points of retinal pigment epithelium (RPE) cultures that reflect native counterparts, we characterised the transcriptomic profiles of the hPSC-derived RPE cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single-cell RNA-sequencing of a total of 16,576 cells to assess the molecular changes of the RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial-mesenchymal transition, and with the maturing populations of the RPE observed with time in culture. Assessment of Gene Ontology pathways revealed that as the cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirms a maturing transcriptional profile of RPE cells in culture. These results suggest that long-term in vitro culture of RPE cells allows the modelling of specific phenotypes observed in native mature tissues. Our work highlights the transcriptional landscape of hPSC-derived RPE cells as they age in culture, which provides a reference for native and patient samples to be benchmarked against.


Asunto(s)
Células Madre Pluripotentes , Epitelio Pigmentado de la Retina , Diferenciación Celular/genética , Línea Celular , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transcriptoma
8.
RNA ; 26(9): 1104-1117, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32393525

RESUMEN

Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.


Asunto(s)
Replicación del ADN/genética , ADN/genética , Procesamiento Proteico-Postraduccional/genética , ARN/genética , Ciclo Celular/genética , Línea Celular Tumoral , Cromatina/genética , Células HeLa , Histonas/genética , Humanos
9.
Lab Chip ; 19(10): 1706-1727, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30997473

RESUMEN

Droplet based scRNA-seq systems such as Drop-seq, inDrop and Chromium 10X have been the catalyst for the wide adoption of high-throughput scRNA-seq technologies in the research laboratory. In order to understand the capabilities of these systems to deeply interrogate biology; here we provide a practical guide through all the steps involved in a typical scRNA-seq experiment. Through comparing and contrasting these three main droplet based systems (and their derivatives), we provide an overview of all critical considerations in obtaining high quality and biologically relevant data. We also discuss the limitations of these systems and how they fit into the emerging field of Genomic Cytometry.


Asunto(s)
RNA-Seq/instrumentación , RNA-Seq/métodos , ARN/genética , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Humanos , Tamaño de la Partícula , Propiedades de Superficie
10.
Front Genet ; 10: 309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031799

RESUMEN

The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer's and Parkinson's disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture ('RNA CaptureSeq') in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression.

11.
Front Neurosci ; 12: 243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719497

RESUMEN

The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

12.
Transl Psychiatry ; 8(1): 89, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29691375

RESUMEN

There is a strong association between cannabis use and schizophrenia but the underlying cellular links are poorly understood. Neurons derived from human-induced pluripotent stem cells (hiPSCs) offer a platform for investigating both baseline and dynamic changes in human neural cells. Here, we exposed neurons derived from hiPSCs to Δ9-tetrahydrocannabinol (THC), and identified diagnosis-specific differences not detectable in vehicle-controls. RNA transcriptomic analyses revealed that THC administration, either by acute or chronic exposure, dampened the neuronal transcriptional response following potassium chloride (KCl)-induced neuronal depolarization. THC-treated neurons displayed significant synaptic, mitochondrial, and glutamate signaling alterations that may underlie their failure to activate appropriately; this blunted response resembles effects previously observed in schizophrenia hiPSC- derived neurons. Furthermore, we show a significant alteration in THC-related genes associated with autism and intellectual disability, suggesting shared molecular pathways perturbed in neuropsychiatric disorders that are exacerbated by THC.


Asunto(s)
Dronabinol/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos Mentales/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Trastorno Autístico/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Discapacidad Intelectual/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Densidad Postsináptica/metabolismo , Esquizofrenia/genética , Transcriptoma
13.
Oncotarget ; 9(21): 15635-15649, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29643998

RESUMEN

Primary liver cancer is the 3rd leading cause of cancer deaths worldwide with very few effective treatments. Sphingosine kinase 1 (SphK1), a key regulator of sphingolipid metabolites, is over-expressed in human hepatocellular carcinoma (HCC) and our previous studies have shown that SphK1 is important in liver injury. We aimed to explore the role of SphK1 specifically in liver tumorigenesis using the SphK1 knockout (SphK1-/-) mouse. SphK1 deletion significantly reduced the number and the size of DEN-induced liver cancers in mice. Mechanistically, fewer proliferating but more apoptotic and senescent cells were detected in SphK1 deficient tumors compared to WT tumors. There was an increase in sphingosine rather than a decrease in sphingosine 1-phosphate (S1P) in SphK1 deficient tumors. Furthermore, the STAT3-S1PR pathway that has been reported previously to mediate the effect of SphK1 on colorectal cancers was not altered by SphK1 deletion in liver cancer. Instead, c-Myc protein expression was down-regulated by SphK1 deletion. In conclusion, this is the first in vivo evidence that SphK1 contributes to hepatocarcinogenesis. However, the downstream signaling pathways impacting on the development of HCC via SphK1 are organ specific providing further evidence that simply transferring known oncogenic molecular pathway targeting into HCC is not always valid.

14.
Cell Metab ; 27(5): 1096-1110.e5, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29681442

RESUMEN

Chronic inflammation is a hallmark of obesity and is linked to the development of numerous diseases. The activation of toll-like receptor 4 (TLR4) by long-chain saturated fatty acids (lcSFAs) is an important process in understanding how obesity initiates inflammation. While experimental evidence supports an important role for TLR4 in obesity-induced inflammation in vivo, via a mechanism thought to involve direct binding to and activation of TLR4 by lcSFAs, several lines of evidence argue against lcSFAs being direct TLR4 agonists. Using multiple orthogonal approaches, we herein provide evidence that while loss-of-function models confirm that TLR4 does, indeed, regulate lcSFA-induced inflammation, TLR4 is not a receptor for lcSFAs. Rather, we show that TLR4-dependent priming alters cellular metabolism, gene expression, lipid metabolic pathways, and membrane lipid composition, changes that are necessary for lcSFA-induced inflammation. These results reconcile previous discordant observations and challenge the prevailing view of TLR4's role in initiating obesity-induced inflammation.


Asunto(s)
Inflamación/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Palmitatos/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Humanos , Inflamación/etiología , Macrófagos/citología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Obesidad/complicaciones , Transducción de Señal
15.
Sci Rep ; 7(1): 6731, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751729

RESUMEN

Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course.


Asunto(s)
Cuerpos Embrioides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistemas de Lectura Abierta , ARN Largo no Codificante/genética , Transcriptoma , Empalme Alternativo , Animales , Diferenciación Celular , Mapeo Cromosómico , Cuerpos Embrioides/citología , Perfilación de la Expresión Génica , Ratones , Anotación de Secuencia Molecular , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , Factores de Tiempo , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Mol Cancer Res ; 15(11): 1558-1569, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28751461

RESUMEN

Esophageal adenocarcinoma (EAC) has one of the fastest increases in incidence of any cancer, along with poor five-year survival rates. Barrett's esophagus (BE) is the main risk factor for EAC; however, the mechanisms driving EAC development remain poorly understood. Here, transcriptomic profiling was performed using RNA-sequencing (RNA-seq) on premalignant and malignant Barrett's tissues to better understand this disease. Machine-learning and network analysis methods were applied to discover novel driver genes for EAC development. Identified gene expression signatures for the distinction of EAC from BE were validated in separate datasets. An extensive analysis of the noncoding RNA (ncRNA) landscape was performed to determine the involvement of novel transcriptomic elements in Barrett's disease and EAC. Finally, transcriptomic mutational investigation of genes that are recurrently mutated in EAC was performed. Through these approaches, novel driver genes were discovered for EAC, which involved key cell cycle and DNA repair genes, such as BRCA1 and PRKDC. A novel 4-gene signature (CTSL, COL17A1, KLF4, and E2F3) was identified, externally validated, and shown to provide excellent distinction of EAC from BE. Furthermore, expression changes were observed in 685 long noncoding RNAs (lncRNA) and a systematic dysregulation of repeat elements across different stages of Barrett's disease, with wide-ranging downregulation of Alu elements in EAC. Mutational investigation revealed distinct pathways activated between EAC tissues with or without TP53 mutations compared with Barrett's disease. In summary, transcriptome sequencing revealed altered expression of numerous novel elements, processes, and networks in EAC and premalignant BE.Implications: This study identified opportunities to improve early detection and treatment of patients with BE and esophageal adenocarcinoma. Mol Cancer Res; 15(11); 1558-69. ©2017 AACR.


Asunto(s)
Adenocarcinoma/genética , Esófago de Barrett/genética , Neoplasias Esofágicas/genética , Secuenciación del Exoma/métodos , Perfilación de la Expresión Génica/métodos , Mutación , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Femenino , Redes Reguladoras de Genes , Humanos , Factor 4 Similar a Kruppel , Aprendizaje Automático , Masculino , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos
17.
BMC Genomics ; 18(1): 250, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335720

RESUMEN

BACKGROUND: DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. RESULTS: To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. CONCLUSIONS: Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes.


Asunto(s)
Encéfalo/fisiología , Metilación de ADN , Potenciación a Largo Plazo/genética , Plasticidad Neuronal/genética , Regiones Promotoras Genéticas/genética , Adulto , Encéfalo/metabolismo , Cromatina/metabolismo , Islas de CpG/genética , Regulación de la Expresión Génica , Sitios Genéticos/genética , Histonas/metabolismo , Humanos , Memoria/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
Sci Rep ; 7: 40127, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28054653

RESUMEN

Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy.


Asunto(s)
Encéfalo/fisiología , Excitabilidad Cortical , Neuronas/fisiología , ARN Largo no Codificante/metabolismo , Convulsiones/patología , Animales , Células Cultivadas , Humanos , Proteínas de Interacción con los Canales Kv/metabolismo , Células Madre Pluripotentes/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Ratas , Canales de Potasio de la Superfamilia Shaker
19.
JAMA Psychiatry ; 73(11): 1180-1188, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27732689

RESUMEN

IMPORTANCE: Schizophrenia candidate genes participate in common molecular pathways that are regulated by activity-dependent changes in neurons. One important next step is to further our understanding on the role of activity-dependent changes of gene expression in the etiopathogenesis of schizophrenia. OBJECTIVE: To examine whether neuronal activity-dependent changes of gene expression are dysregulated in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS: Neurons differentiated from human-induced pluripotent stem cells derived from 4 individuals with schizophrenia and 4 unaffected control individuals were depolarized using potassium chloride. RNA was extracted followed by genome-wide profiling of the transcriptome. Neurons were planted on June 21, 2013, and harvested on August 2, 2013. MAIN OUTCOMES AND MEASURES: We performed differential expression analysis and gene coexpression analysis to identify activity-dependent or disease-specific changes of the transcriptome. Gene expression differences were assessed with linear models. Furthermore, we used gene set analyses to identify coexpressed modules that are enriched for schizophrenia risk genes. RESULTS: We identified 1669 genes that were significantly different in schizophrenia-associated vs control human-induced pluripotent stem cell-derived neurons and 1199 genes that are altered in these cells in response to depolarization (linear models at false discovery rate ≤0.05). The effect of activity-dependent changes of gene expression in schizophrenia-associated neurons (59 significant genes at false discovery rate ≤0.05) was attenuated compared with control samples (594 significant genes at false discovery rate ≤0.05). Using gene coexpression analysis, we identified 2 modules (turquoise and brown) that were associated with diagnosis status and 2 modules (yellow and green) that were associated with depolarization at a false discovery rate of ≤0.05. For 3 of the 4 modules, we found enrichment with schizophrenia-associated variants: brown (χ2 = 20.68; P = .002), turquoise (χ2 = 12.95; P = .04), and yellow (χ2 = 15.34; P = .02). CONCLUSIONS AND RELEVANCE: In this analysis, candidate genes clustered within gene networks that were associated with a blunted effect of activity-dependent changes of gene expression in schizophrenia-associated neurons. Overall, these findings link schizophrenia candidate genes with specific molecular functions in neurons, which could be used to examine underlying mechanisms and therapeutic interventions related to schizophrenia.


Asunto(s)
Regulación de la Expresión Génica/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Regulación hacia Abajo/genética , Redes Reguladoras de Genes/genética , Estudios de Asociación Genética , Variación Genética/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Valores de Referencia , Transcripción Genética/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...