Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1199085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405169

RESUMEN

Deep-sea hydrothermal vents offer unique habitats for heat tolerant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain, which was prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid-Ocean Ridge. Sequence comparisons against the MEROPS-MPRO database showed that globupain has the highest sequence identity to C11-like proteases present in human gut and intestinal bacteria. Successful recombinant expression in Escherichia coli of the wild-type zymogen and 13 mutant substitution variants allowed assessment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca2+. When activated, the 52kDa proenzyme was processed at K137 and K144 into a 12kDa light- and 32kDa heavy chain heterodimer. A structurally conserved H132/C185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans. Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR-aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (Tm activated enzyme = 94.51°C ± 0.09°C) with optimal activity at 75°C and pH 7.1. Characterization of globupain has expanded our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.

2.
bioRxiv ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066400

RESUMEN

Deep-sea hydrothermal vent systems with prevailing extreme thermal conditions for life offer unique habitats to source heat tolearant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain , prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid- Ocean Ridges. By sequence comparisons against the MEROPS-MPRO database, globupain showed highest sequence identity to C11-like proteases present in human gut and intestinal bacteria,. Successful recombinant expression in Escherichia coli of the active zymogen and 13 mutant substitution variants allowed assesment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca²âº. When activated, the 52 kDa proenzyme was processed at Lys 137 and Lys 144 into a 12 kDa light- and 32 kDa heavy chain heterodimer. A structurally conserved His 132 /Cys 185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans . Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR- aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (T m activated enzyme = 94.51 ± 0.09°C) with optimal activity at 75 °C and pH 7.1. By characterizing globupain, our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases have been expanded. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.

3.
Protein Sci ; 32(3): e4585, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721347

RESUMEN

Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/ß-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.


Asunto(s)
Peptidoglicano , Profagos , Profagos/metabolismo , Peptidoglicano/metabolismo , Cloruro de Sodio , Dominio Catalítico , Modelos Moleculares , Amidohidrolasas/metabolismo , Pared Celular , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo
4.
Microbiol Spectr ; 10(5): e0165722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094301

RESUMEN

This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 µM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (logK based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. IMPORTANCE Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Asunto(s)
Antibacterianos , Bacterias , Péptidos , Animales , Acinetobacter baumannii , Adenosina Trifosfato , Aminoácidos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular , Mamíferos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Fosfolípidos , Agua
5.
Methods Mol Biol ; 2538: 319-333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951309

RESUMEN

Bacterial chromosomal DNA is packed within a non-membranous structure, the nucleoid, thanks to nucleoid associated proteins (NAPs). The role of bacterial amyloid has recently emerged among these NAPs, particularly with the nucleoid-associated protein Hfq that plays a direct role in DNA compaction. In this chapter, we present a 3D imaging technique, cryo-soft X-ray tomography (cryo-SXT) to obtain a detailed 3D visualization of subcellular bacterial structures, especially the nucleoid. Cryo-SXT imaging of native unlabeled cells enables observation of the nucleoid in 3D with a high resolution, allowing to evidence in vivo the role of amyloids on DNA compaction. The precise experimental methods to obtain 3D tomograms will be presented.


Asunto(s)
Orgánulos , Tomografía por Rayos X , Proteínas Amiloidogénicas , Proteínas Bacterianas , ADN , ADN Bacteriano , Imagenología Tridimensional/métodos , Orgánulos/ultraestructura , Tomografía por Rayos X/métodos
6.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887293

RESUMEN

We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3'-5' exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3'-5' exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme's activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme's moderate thermal stability.


Asunto(s)
Bacteriófagos , Thermus thermophilus , Secuencia de Aminoácidos , Bacteriófagos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfodiesterasa I/metabolismo , Thermus thermophilus/metabolismo
7.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 212-227, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102887

RESUMEN

This study describes the production, characterization and structure determination of a novel Holliday junction-resolving enzyme. The enzyme, termed Hjc_15-6, is encoded in the genome of phage Tth15-6, which infects Thermus thermophilus. Hjc_15-6 was heterologously produced in Escherichia coli and high yields of soluble and biologically active recombinant enzyme were obtained in both complex and defined media. Amino-acid sequence and structure comparison suggested that the enzyme belongs to a group of enzymes classified as archaeal Holliday junction-resolving enzymes, which are typically divalent metal ion-binding dimers that are able to cleave X-shaped dsDNA-Holliday junctions (Hjs). The crystal structure of Hjc_15-6 was determined to 2.5 Šresolution using the selenomethionine single-wavelength anomalous dispersion method. To our knowledge, this is the first crystal structure of an Hj-resolving enzyme originating from a bacteriophage that can be classified as an archaeal type of Hj-resolving enzyme. As such, it represents a new fold for Hj-resolving enzymes from phages. Characterization of the structure of Hjc_15-6 suggests that it may form a dimer, or even a homodimer of dimers, and activity studies show endonuclease activity towards Hjs. Furthermore, based on sequence analysis it is proposed that Hjc_15-6 has a three-part catalytic motif corresponding to E-SD-EVK, and this motif may be common among other Hj-resolving enzymes originating from thermophilic bacteriophages.


Asunto(s)
Bacteriófagos , ADN Cruciforme , Archaea/genética , Archaea/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Thermus thermophilus
8.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502443

RESUMEN

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Asunto(s)
Clostridium botulinum tipo E/enzimología , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Clostridium/efectos de los fármacos , Clostridium/ultraestructura , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/farmacología , Lipopolisacáridos/metabolismo , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/aislamiento & purificación , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Profagos/enzimología , Ácidos Teicoicos/metabolismo
9.
Acta Biochim Pol ; 68(3): 399-405, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34436839

RESUMEN

DNA indexing is based on a presynthesized library of oligonucleotide adaptors (256 in total), named indexers, and type-IIS restriction endonucleases. It enables amplification and direct analysis of large DNA fragments with low overall redundancy and without subcloning. Here, we describe a detailed protocol for PCR-based amplification of DNA fragments followed by DNA sequencing by indexer walking and provide helpful hints on its practical use. The proposed protocol can be applied to the sequencing of plasmids, cDNA clones, and longer DNA fragments. It can also be used for gap filling at the final stage of genome sequencing projects.


Asunto(s)
ADN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases/genética , Cartilla de ADN/genética , Enzimas de Restricción del ADN/genética , ADN Complementario/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Oligonucleótidos/genética , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos
10.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34114607

RESUMEN

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Asunto(s)
Genoma Viral/genética , Metagenómica , Bioprospección/organización & administración , Biología Computacional , Bases de Datos Genéticas , Europa (Continente) , Respiraderos Hidrotermales/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Viroma/genética , Virus/clasificación , Virus/genética
11.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664473

RESUMEN

Peptidoglycan hydrolytic enzymes are considered to be a promising alternative to conventional antibiotics in combating bacterial infections. To identify novel hydrolytic enzymes, we performed a database search with the sequences of two thermostable endolysins with high bactericidal activity, studied earlier in our laboratory. Both these enzymes originate from Thermus scotoductus bacteriophages MAT2119 and vB_Tsc2631. A lytic enzyme LysC from Clostridium intestinale URNW was found to have the highest amino acid sequence similarity to the bacteriophage proteins and was chosen for further analysis. The recombinant enzyme showed strong activity against its host bacteria C. intestinale, as well as against C. sporogenes, Bacillus cereus, Micrococcus luteus, and Staphylococcus aureus, on average causing a 5.12 ± 0.14 log reduction of viable S. aureus ATCC 25923 cells in a bactericidal assay. Crystallographic studies of the protein showed that the catalytic site of LysC contained a zinc atom coordinated by amino acid residues His50, His147, and Cys155, a feature characteristic for type 2 amidases. Surprisingly, neither of these residues, nor any other of the four conserved residues in the vicinity of the active site, His51, Thr52, Tyr76, and Thr153, were essential to maintain the antibacterial activity of LysC. Therefore, our attention was attracted to the intrinsically disordered and highly positively charged N-terminal region of the enzyme. Potential antibacterial activity of this part of the sequence, predicted by the Antimicrobial Sequence Scanning System, AMPA, was confirmed in our experimental studies; the truncated version of LysC (LysCΔ2-23) completely lacked antibacterial activity. Moreover, a synthetic peptide, which we termed Intestinalin, with a sequence identical to the first thirty amino acids of LysC, displayed substantial anti-staphylococcal activity with IC50 of 6 µg/mL (1.5 µM). This peptide was shown to have α-helical conformation in solution in the presence of detergents which is a common feature of amphipathic α-helical antimicrobial peptides.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Clostridium/enzimología , Endopeptidasas/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Bacteriófagos/enzimología , Dominio Catalítico , Simulación por Computador , Secuencia Conservada , Cristalografía por Rayos X , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/farmacología , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Staphylococcus aureus/efectos de los fármacos , Proteínas Virales/química
12.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 1028-1039, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31692476

RESUMEN

As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPß were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.3 Å, respectively. XepA consists of two antiparallel ß-sandwich domains connected by a 30-amino-acid linker region. A pentamer of this protein adopts a unique dumbbell-shaped architecture consisting of two discs and a central tunnel. YomS (12.9 kDa per monomer), which is less than half the size of XepA (30.3 kDa), shows homology to the C-terminal part of XepA and exhibits a similar pentameric disc arrangement. Each ß-sandwich entity resembles the fold of typical cytoplasmic membrane-binding C2 domains. Only XepA exhibits distinct cytotoxic activity in vivo, suggesting that the N-terminal pentameric domain is essential for this biological activity. The biological and structural data presented here suggest that XepA disrupts the proton motive force of the cytoplasmatic membrane, thus supporting cell lysis.


Asunto(s)
Fagos de Bacillus/metabolismo , Profagos/metabolismo , Proteínas Virales/química , Bacillus subtilis/virología , Clonación Molecular , Cristalografía por Rayos X/métodos , Estructura Terciaria de Proteína
13.
Viruses ; 11(7)2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323845

RESUMEN

Bacteria that thrive in extreme conditions and the bacteriophages that infect them are sources of valuable enzymes resistant to denaturation at high temperatures. Many of these heat-stable proteins are useful for biotechnological applications; nevertheless, none have been utilized as antibacterial agents. Here, we demonstrate the bactericidal potential of Ts2631 endolysin from the extremophilic bacteriophage vB_Tsc2631, which infects Thermus scotoductus, against the alarming multidrug-resistant clinical strains of Acinetobacter baumannii, Pseudomonas aeruginosa and pathogens from the Enterobacteriaceae family. A 2-3.7 log reduction in the bacterial load was observed in antibacterial tests against A. baumannii and P. aeruginosa after 1.5 h. The Ts2631 activity was further enhanced by ethylenediaminetetraacetic acid (EDTA), a metal ion chelator (4.2 log reduction in carbapenem-resistant A. baumannii) and, to a lesser extent, by malic acid and citric acid (2.9 and 3.3 log reductions, respectively). The EDTA/Ts2631 combination reduced all pathogens of the Enterobacteriaceae family, particularly multidrug-resistant Citrobacter braakii, to levels below the detection limit (>6 log); these results indicate that Ts2631 endolysin could be useful to combat Gram-negative pathogens. The investigation of A. baumannii cells treated with Ts2631 endolysin variants under transmission electron and fluorescence microscopy demonstrates that the intrinsic antibacterial activity of Ts2631 endolysin is dependent on the presence of its N-terminal tail.


Asunto(s)
Antiinfecciosos/farmacología , Bacteriófagos/fisiología , Farmacorresistencia Bacteriana Múltiple , Endopeptidasas/genética , Thermus/efectos de los fármacos , Thermus/fisiología , Thermus/virología , Bacteriólisis , Bacteriófagos/ultraestructura , Endopeptidasas/metabolismo , Interacciones Huésped-Patógeno
14.
Sci Rep ; 9(1): 5808, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967604

RESUMEN

Restriction-modification (R-M) systems are highly widespread among bacteria and archaea, and they appear to play a pivotal role in modulating horizontal gene transfer, as well as in protecting the host organism against viruses and other invasive DNA particles. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). If the cell is to survive, the counteracting activities as toxin and antitoxin, must be finely balanced in vivo. The molecular basis of this regulatory process remains unclear and current searches for regulatory elements in R-M modules are focused mainly at the transcription step. In this report, we show new aspects of REase control that are linked to translation. We used the EcoVIII R-M system as a model. Both, the REase and MTase genes for this R-M system contain an unusually high number of rare arginine codons (AGA and AGG) when compared to the rest of the E. coli K-12 genome. Clusters of these codons near the N-terminus of the REase greatly affect the translational efficiency. Changing these to higher frequency codons for E. coli (CGC) improves the REase synthesis, making the R-M system more potent to defend its host against bacteriophages. However, this improved efficiency in synthesis reduces host fitness due to increased autorestriction. We hypothesize that expression of the endonuclease gene can be modulated depending on the host genetic context and we propose a novel post-transcriptional mode of R-M system regulation that alleviates the potential lethal action of the restriction enzyme.


Asunto(s)
Arginina/genética , Metilasas de Modificación del ADN/genética , Enzimas de Restricción del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , Escherichia coli K12/genética , Bacteriófago T7/genética , Regulación Bacteriana de la Expresión Génica/genética , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Plásmidos/genética
15.
Sci Rep ; 9(1): 1261, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718611

RESUMEN

To escape from hosts after completing their life cycle, bacteriophages often use endolysins, which degrade bacterial peptidoglycan. While mesophilic phages have been extensively studied, their thermophilic counterparts are not well characterized. Here, we present a detailed analysis of the structure and function of Ts2631 endolysin from thermophilic phage vB_Tsc2631, which is a zinc-dependent amidase. The active site of Ts2631 consists of His30, Tyr58, His131 and Cys139, which are involved in Zn2+ coordination and catalysis. We found that the active site residues are necessary for lysis yet not crucial for peptidoglycan binding. To elucidate residues involved in the enzyme interaction with peptidoglycan, we tested single-residue substitution variants and identified Tyr60 and Lys70 as essential residues. Moreover, substitution of Cys80, abrogating disulfide bridge formation, inactivates Ts2631, as do substitutions of His31, Thr32 and Asn85 residues. The endolysin contains a positively charged N-terminal extension of 20 residues that can protrude from the remainder of the enzyme and is crucial for peptidoglycan binding. We show that the deletion of 20 residues from the N-terminus abolished the bacteriolytic activity of the enzyme. Because Ts2631 exhibits intrinsic antibacterial activity and unusual thermal stability, it is perfectly suited as a scaffold for the development of antimicrobial agents.


Asunto(s)
Bacteriófagos/fisiología , Endopeptidasas/metabolismo , Peptidoglicano/metabolismo , Thermus/virología , Proteínas Virales/metabolismo , Bacteriólisis , Bacteriófagos/química , Bacteriófagos/enzimología , Dominio Catalítico , Endopeptidasas/química , Modelos Moleculares , Conformación Proteica , Thermus/fisiología , Proteínas Virales/química
16.
Sci Rep ; 8(1): 8243, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844340

RESUMEN

Here, we report results on systematic analysis of DNA substrate preferences of three N6-adenine ß-class DNA methyltransferases that are part of the type II restriction-modification systems. The studied enzymes were: M.EcoVIII, M.HindIII and M.LlaCI, which although found in phylogenetically distant bacteria (γ-proteobacteria and low-GC Gram-positive bacteria), recognize the same palindromic specific sequence 5'-AAGCTT-3' and catalyze formation of N6-methyladenine at the first A-residue. As expected overall the enzymes share the most analyzed features, but they show also some distinct differences in substrate recognition. Therefore DNA methylation reactions were carried out not only under standard, but also under relaxed conditions using DMSO or glycerol. We found that all of these enzymes preferred DNA containing a hemimethylated target site, but differ in modification of ssDNA, especially more pronounced for M.EcoVIII under relaxed conditions. In these conditions they also have shown varied preferences toward secondary sites, which differ by one nucleotide from specific sequence. They preferred sequences with substitutions at the 1st (A1 → G/C) and at the 2nd position (A2 → C), while sites with substitutions at the 3rd position (G3 → A/C) were modified less efficiently. Kinetic parameters of the methylation reaction carried out by M.EcoVIII were determined. Methylation efficiency (kcat/Km) of secondary sites was 4.5-10 times lower when compared to the unmethylated specific sequences, whilst efficiency observed for the hemimethylated substrate was almost 4.5 times greater. We also observed a distinct effect of analyzed enzymes on unspecific interaction with DNA phosphate backbone. We concluded that for all three enzymes the most critical is the phosphodiester bond between G3-C4 nucleotides at the center of the target site.


Asunto(s)
Metilasas de Modificación del ADN/metabolismo , ADN/genética , Gammaproteobacteria/fisiología , Adenina , Secuencia de Aminoácidos , Sitios de Unión/genética , ADN/metabolismo , Metilación de ADN , Enzimas de Restricción-Modificación del ADN , Dimetilsulfóxido/metabolismo , Glicerol/metabolismo , Secuencias Invertidas Repetidas/genética , Cinética , Oligonucleótidos/metabolismo , Especificidad por Sustrato
17.
PLoS One ; 12(8): e0183512, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28846713

RESUMEN

Here, we present a simple theoretical model to study plasmid stability, based on one input parameter which is the copy number of plasmids present in a host cell. The Monte Carlo approach was used to analyze random fluctuations affecting plasmid replication and segregation leading to gradual reduction in the plasmid population within the host cell. This model was employed to investigate maintenance of pEC156 derivatives, a high-copy number ColE1-type Escherichia coli plasmid that carries an EcoVIII restriction-modification system. Plasmid stability was examined in selected Escherichia coli strains (MG1655, wild-type; MG1655 pcnB, and hyper-recombinogenic JC8679 sbcA). We have compared the experimental data concerning plasmid maintenance with the simulations and found that the theoretical stability patterns exhibited an excellent agreement with those empirically tested. In our simulations, we have investigated the influence of replication fails (α parameter) and uneven partition as a consequence of multimer resolution fails (δ parameter), and the post-segregation killing factor (ß parameter). All of these factors act at the same time and affect plasmid inheritance at different levels. In case of pEC156-derivatives we concluded that multimerization is a major determinant of plasmid stability. Our data indicate that even small changes in the fidelity of segregation can have serious effects on plasmid stability. Use of the proposed mathematical model can provide a valuable description of plasmid maintenance, as well as enable prediction of the probability of the plasmid loss.


Asunto(s)
ADN Bacteriano , Escherichia coli/genética , Modelos Teóricos , Plásmidos/genética , Simulación por Computador , Replicación del ADN
18.
PLoS One ; 12(1): e0169846, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28085908

RESUMEN

Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
19.
PLoS One ; 11(2): e0148355, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26848973

RESUMEN

Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Secuencias Repetitivas Esparcidas/genética , Plásmidos/genética , Secuencia de Bases , Escherichia coli/citología , Datos de Secuencia Molecular , Transformación Genética
20.
J Appl Genet ; 57(2): 239-49, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26337425

RESUMEN

The radA gene of the hyperthermophilic archaeon Pyrococcus woesei (Thermococcales) was cloned and overexpressed in Escherichia coli. The 1050-bp gene codes for a 349-amino-acid polypeptide with an M r of 38,397 which shows 100 % positional amino acid identity to Pyrococcus furiosus RadA and 27.1 % to the E. coli RecA protein. Recombinant RadA was overproduced in Escherichia coli as a His-tagged fusion protein and purified to electrophoretic homogeneity using a simple procedure consisting of ammonium sulfate precipitation and metal-affinity chromatography. In solution RadA exists as an undecamer (11-mer). The protein binds both to ssDNA and dsDNA. RadA has been found to be highly thermostable, it remains almost unaffected by a 4-h incubation at 94 °C. The addition of the RadA protein to either simplex or multiplex PCR assays, significantly improves the specificity of DNA amplification by eliminating non-specific products. Among applications tested the RadA protein proved to be useful in allelic discrimination assay of HADHA gene associated with long-chain 3-hydroxylacyl-CoA dehydrogenase deficiency that in infancy may lead to hypotonia, serious heart and liver problems and even sudden death.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas de Unión al ADN/metabolismo , Reacción en Cadena de la Polimerasa Multiplex , Pyrococcus/genética , Proteínas Arqueales/genética , Clonación Molecular , ADN de Archaea/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Calor , Datos de Secuencia Molecular , Estabilidad Proteica , Pyrococcus/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...