Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37238932

RESUMEN

Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.

2.
Mol Cell Neurosci ; 125: 103840, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36921783

RESUMEN

An altered neuronal excitability of spinal motoneurones has consistently been implicated in Amyotrophic Lateral Sclerosis (ALS) leading to several investigations of synaptic input to these motoneurones. One such input that has repeatedly been shown to be affected is a population of large cholinergic synapses terminating mainly on the soma of the motoneurones referred to as C-boutons. Most research on these synapses during disease progression has used transgenic Superoxide Dismutase 1 (SOD1) mouse models of the disease which have not only produced conflicting findings, but also fail to recapitulate the key pathological feature seen in ALS; cytoplasmic accumulations of TAR DNA-binding protein 43 (TDP-43). Additionally, they fail to distinguish between slow and fast motoneurones, the latter of which have more C-boutons, but are lost earlier in the disease. To circumvent these issues, we quantified the frequency and volume of C-boutons on traced soleus and gastrocnemius motoneurones, representing predominantly slow and fast motor pools respectively. Experiments were performed using the TDP-43ΔNLS mouse model that carries a transgenic construct of TDP-43 devoid of its nuclear localization signal, preventing its nuclear import. This results in the emergence of pathological TDP-43 inclusions in the cytoplasm, modelling the main pathology seen in this disorder, accompanied by a severe and lethal ALS phenotype. Our results confirmed changes in both the number and volume of C-boutons with a decrease in number on the more vulnerable, predominantly fast gastrocnemius motoneurones and an increase in number on the less vulnerable, predominantly slow soleus motoneurones. Importantly, these changes were only found in male mice. However, both sexes and motor pools showed a decrease in C-bouton volume. Our experiments confirm that cytoplasmic TDP-43 accumulation is sufficient to drive C-bouton changes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Femenino , Masculino , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Neuronas Motoras/metabolismo , Ratones Transgénicos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad
4.
J Physiol ; 598(19): 4385-4403, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32716521

RESUMEN

KEY POINTS: Although in vitro recordings using neonatal preparations from mouse models of amyotrophic lateral sclerosis (ALS) suggest increased motoneurone excitability, in vivo recordings in adult ALS mouse models have been conflicting. In adult G93A SOD1 models, spinal motoneurones have previously been shown to have deficits in repetitive firing, in contrast to the G127X SOD1 mouse model. Our in vivo intracellular recordings in barbiturate-anaesthetized adult male G93A SOD1 mice reveal that the incidence of failure to fire with current injection was equally low in control and ALS mice (∼2%). We show that failure to fire repetitively can be a consequence of experimental protocol and should not be used alone to classify otherwise normal motoneurones as hypo-excitable. Motoneurones in the G93A SOD1 mice showed an increased response to inputs, with lower rheobase, higher input-output gains and increased activation of persistent inward currents. ABSTRACT: In vitro studies from transgenic amyotrophic lateral sclerosis models have suggested an increased excitability of spinal motoneurones. However, in vivo intracellular recordings from adult amyotrophic lateral sclerosis mice models have produced conflicting findings. Previous investigations using barbiturate anaesthetized G93A SOD1 mice have suggested that some motoneurones are hypo-excitable, defined by deficits in repetitive firing. Our own previous recordings in G127X SOD1 mice using different anaesthesia, however, showed no repetitive firing deficits and increased persistent inward currents at symptom onset. These discrepancies may be a result of differences between models, symptomatic stage, anaesthesia or technical differences. To investigate this, we repeated our original experiments, but in adult male G93A SOD1 mice, at both presymptomatic and symptomatic stages, under barbiturate anaesthesia. In vivo intracellular recordings from antidromically identified spinal motoneurones revealed that the incidence of failure to fire with current injection was equally low in control and G93A SOD1 mice (∼2%). Motoneurones in G93A SOD1 mice fired significantly more spontaneous action potentials. Rheobase was significantly lower and the input resistance and input-output gain were significantly higher in both presymptomatic and symptomatic G93A SOD1 mice. This was despite a significant increase in the duration of the post-spike after-hyperpolarization in both presymptomatic and symptomatic G93A SOD1 mice. Finally, evidence of increased activation of persistent inward currents was seen in both presymptomatic and symptomatic G93A SOD1 mice. Our results do not confirm previous reports of hypo-excitability of spinal motoneurones in the G93A SOD1 mouse and demonstrate that the motoneurones show an increased response to inputs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras , Médula Espinal , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA