Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dysphagia ; 35(2): 343-359, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31300881

RESUMEN

The goal of this study was to compare dysphagia phenotypes in low and high copy number (LCN and HCN) transgenic superoxide dismutase 1 (SOD1) mouse models of ALS to accelerate the discovery of novel and effective treatments for dysphagia and early amyotrophic lateral sclerosis (ALS) diagnosis. Clinicopathological features of dysphagia were characterized in individual transgenic mice and age-matched controls utilizing videofluoroscopy in conjunction with postmortem assays of the tongue and hypoglossal nucleus. Quantitative PCR accurately differentiated HCN-SOD1 and LCN-SOD1 mice and nontransgenic controls. All HCN-SOD1 mice developed stereotypical paralysis in both hindlimbs. In contrast, LCN-SOD1 mice displayed wide variability in fore- and hindlimb involvement. Lick rate, swallow rate, inter-swallow interval, and pharyngeal transit time were significantly altered in both HCN-SOD1 and LCN-SOD1 mice compared to controls. Tongue weight, tongue dorsum surface area, total tongue length, and caudal tongue length were significantly reduced only in the LCN-SOD1 mice compared to age-matched controls. LCN-SOD1 mice with lower body weights had smaller/lighter weight tongues, and those with forelimb paralysis and slower lick rates died at a younger age. LCN-SOD1 mice had a 32% loss of hypoglossal neurons, which differed significantly when compared to age-matched control mice. These novel findings for LCN-SOD1 mice are congruent with reported dysphagia and associated tongue atrophy and hypoglossal nucleus pathology in human ALS patients, thus highlighting the translational potential of this mouse model in ALS research.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Trastornos de Deglución/genética , Deglución/genética , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Autopsia , Cinerradiografía , Trastornos de Deglución/fisiopatología , Modelos Animales de Enfermedad , Femenino , Miembro Anterior/fisiopatología , Tránsito Gastrointestinal , Dosificación de Gen , Miembro Posterior/fisiopatología , Humanos , Nervio Hipogloso/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Parálisis/genética , Parálisis/fisiopatología , Faringe/fisiopatología , Lengua/fisiopatología , Investigación Biomédica Traslacional
2.
Dysphagia ; 30(3): 328-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25783697

RESUMEN

Presbyphagia affects approximately 40% of otherwise healthy people over 60 years of age. Hence, it is a condition of primary aging rather than a consequence of primary disease. This distinction warrants systematic investigations to understand the causal mechanisms of aging versus disease specifically on the structure and function of the swallowing mechanism. Toward this goal, we have been studying healthy aging C57BL/6 mice (also called B6), the most popular laboratory rodent for biomedical research. The goal of this study was to validate this strain as a model of presbyphagia for translational research purposes. We tested two age groups of B6 mice: young (4-7 months; n = 16) and old (18-21 months; n = 11). Mice underwent a freely behaving videofluoroscopic swallow study (VFSS) protocol developed in our lab. VFSS videos (recorded at 30 frames per second) were analyzed frame-by-frame to quantify 15 swallow metrics. Six of the 15 swallow metrics were significantly different between young and old mice. Compared to young mice, old mice had significantly longer pharyngeal and esophageal transit times (p = 0.038 and p = 0.022, respectively), swallowed larger boluses (p = 0.032), and had a significantly higher percentage of ineffective primary esophageal swallows (p = 0.0405). In addition, lick rate was significantly slower for old mice, measured using tongue cycle rate (p = 0.0034) and jaw cycle rate (p = 0.0020). This study provides novel evidence that otherwise healthy aging B6 mice indeed develop age-related changes in swallow function resembling presbyphagia in humans. Specifically, aging B6 mice have a generally slow swallow that spans all stages of swallowing: oral, pharyngeal, and esophageal. The next step is to build upon this foundational work by exploring the responsible mechanisms of presbyphagia in B6 mice.


Asunto(s)
Trastornos de Deglución/fisiopatología , Fluoroscopía/métodos , Envejecimiento , Animales , Deglución , Modelos Animales de Enfermedad , Femenino , Fluoroscopía/instrumentación , Masculino , Ratones Endogámicos C57BL , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...