Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Microorganisms ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543683

RESUMEN

AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 are involved. This study investigated the prevalence of the AmpC beta-lactamase DHA-1 in ESBL/AmpC-producing E. coli (n = 4706) collected between 2016 and 2021 as part of a German antimicrobial resistance monitoring program along the food chain. Eight isolates (prevalence < 0.2%) were detected and further characterized by PFGE, transformation and conjugation experiments as well as short-read and long-read sequencing. All eight strains harbored blaDHA-1 together with qnrB4, sul1 and mph(A) resistance genes on an IS26 composite transposon on self-transferable IncFII or IncFIA/FIB/II plasmids. During laboratory experiments, activation of the translocatable unit of IS26-bound structures was observed. This was shown by the variability of plasmid sizes in original isolates, transconjugants or transferred plasmids, and correspondingly, duplications of resistance fragments were found in long-read sequencing. This activation could be artificial due to laboratory handling or naturally occurring. Nevertheless, DHA-1 is a rare AmpC beta-lactamase in livestock and food in Germany, and its dissemination will be monitored in the future.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978419

RESUMEN

Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, and environmental sources and its resistant phenotype, derived from the carriage of plasmid-borne extended-spectrum and AmpC ß-lactamases, which limits the choice of effective antimicrobial therapies. The epidemiology of ESC-EC infection is complex as a result of the multiple possible sources involved in its transmission, and its study would require databases ideally comprising information from animal (livestock, companion, wildlife), human, and environmental sources. Here, we present the steps taken to assemble a database with phenotypic and genetic information on 10,763 ESC-EC isolates retrieved from multiple sources provided by 13 partners located in eight European countries, in the frame of the DiSCoVeR Joint Research project funded by the One Health European Joint Programme (OH-EJP), along with its strengths and limitations. This database represents a first step to help in the assessment of different geographical and temporal trends and transmission dynamics in animals and humans. The work performed highlights aspects that should be considered in future international efforts, such as the one presented here.

3.
Antibiotics (Basel) ; 11(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36289940

RESUMEN

In this study, resistance rates in Escherichia coli from organic and conventional poultry in Germany were compared. Isolates were randomly collected from organic and conventional broiler and turkey flocks at the farm and from turkey meat at retail. Resistance testing was performed as prescribed by Commission implementing decision 2013/652/EU. Logistic regression analyses were performed for the resistance to the different antimicrobials. Overall, resistance rates for the antimicrobials tested were lower in E. coli from organic than from conventionally raised animals. In turkeys, the percentage of isolates susceptible to all antimicrobials tested from animals and meat was twice as high from organic than from conventional origin (~50% vs. <25%). In broilers, the percentage of susceptible isolates from organic farms was five times higher than from conventional farms (70.1% vs. 13.3%) and resistance to three or more classes of antimicrobials was 1.7- to 5.0-fold more common in isolates from conventional farms. The differences between organic and conventional farming were more pronounced in broilers than in turkeys. More studies on turkeys are needed to determine whether this difference is confirmed.

4.
Microorganisms ; 9(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34576822

RESUMEN

Resistance of bacteria to 3rd generation cephalosporins mediated by beta-lactamases (ESBL, pAmpC) is a public health concern. In this study, 1517 phenotypically cephalosporin-resistant E. coli were screened for the presence of blaSHV genes. Respective genes were detected in 161 isolates. Majority (91%) were obtained from poultry production and meat. The SHV-12 beta-lactamase was the predominant variant (n = 155), while the remaining isolates exhibited SHV-2 (n = 4) or SHV-2a (n = 2). A subset of the isolates (n = 51) was further characterized by PCR, PFGE, or whole-genome sequencing and bioinformatics analysis. The SHV-12-producing isolates showed low phylogenetic relationships, and dissemination of the blaSHV-12 genes seemed to be mainly driven by horizontal gene transfer. In most of the isolates, blaSHV-12 was located on transferable IncX3 (~43 kb) or IncI1 (~100 kb) plasmids. On IncX3, blaSHV-12 was part of a Tn6 composite transposon located next to a Tn3 transposon, which harbored the fluoroquinolone resistance gene qnrS1. On IncI1 plasmids, blaSHV-12 was located on an incomplete class 1 integron as part of a Tn21 transposon. In conclusion, SHV-12 is widely distributed in German poultry production and spreads via horizontal gene transfer. Consumers are at risk by handling raw poultry meat and should take care in appropriate kitchen hygiene.

5.
Microorganisms ; 9(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066213

RESUMEN

Human exposure to bacteria carrying antimicrobial resistance (AMR) genes through the consumption of food of animal origin is a topic which has gained increasing attention in recent years. Bacterial transmission can be enhanced, particularly in situations in which the consumer pays less attention to hygiene practices, and consumer exposure to foodborne resistant bacteria through ready-to-eat foods could be increased. It has been demonstrated that even methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which have low prevalence and concentration in raw chicken meat in Germany, may reach the consumer during barbecue events after failures in hygiene practices. This study aimed to quantify the consumer exposure to extended-spectrum beta-lactamase- (ESBL) or ampicillinase class C (AmpC) beta-lactamase-producing E. coli in Germany through the consumption of chicken meat and bread during household barbecues. The study considered cross-contamination and recontamination processes from raw chicken meat by using a previously-developed probabilistic consumer exposure model. In addition, a comparative analysis of consumer exposure was carried out between ESBL-/AmpC-producing E. coli and MRSA. Our results demonstrated that the probability of ESBL-/AmpC-producing E. coli reaching the consumer was 1.85 × 10-5 with the number of bacteria in the final serving averaging 332. Given the higher prevalence and concentration of ESBL-/AmpC-producing E. coli in raw chicken meat at retail compared to MRSA, comparative exposure assessment showed that the likelihood and extent of exposure were significantly higher for ESBL-/AmpC-producing E. coli than for MRSA. ESBL-/AmpC-producing E. coli was determined to be 7.6 times likelier (p-value < 0.01) than MRSA to reach the consumer, with five times the concentration of bacteria in the final serving (p-value < 0.01).

6.
Antibiotics (Basel) ; 10(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668337

RESUMEN

Cefotaxime (CTX)-resistant Enterobacteriaceae are still an ongoing challenge in human and veterinary health. High prevalence of these resistant bacteria is detected in broiler chickens and the prevention of their dissemination along the production pyramid is of major concern. The impact of certain on-farm interventions on the external bacterial contamination of broiler chickens, as well as their influence on single processing steps and (cross-) contamination, have not yet been evaluated. Therefore, we investigated breast skin swab samples of broiler chickens before and during slaughter at an experimental slaughter facility. Broiler chickens were previously challenged with CTX-resistant Escherichia coli strains in a seeder-bird model and subjected to none (control group (CG)) or four different on-farm interventions: drinking water supplementation based on organic acids (DW), slow growing breed Rowan x Ranger (RR), reduced stocking density (25 kg/sqm) and competitive exclusion with Enterobacteriales strain IHIT36098(CE). Chickens of RR, 25 kg/sqm, and CE showed significant reductions of the external contamination compared to CG. The evaluation of a visual scoring system indicated that wet and dirty broiler chickens are more likely a vehicle for the dissemination of CTX-resistant and total Enterobacteriaceae into the slaughterhouses and contribute to higher rates of (cross-) contamination during processing.

7.
Microorganisms ; 8(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081194

RESUMEN

Resistance to carbapenems due to carbapenemase-producing Enterobacteriaceae (CPE) is an increasing threat to human health worldwide. In recent years, CPE could be found only sporadically from livestock, but concern rose that livestock might become a reservoir for CPE. In 2019, the first GES carbapenemase-producing Escherichia coli from livestock was detected within the German national monitoring on antimicrobial resistance. The isolate was obtained from pig feces and was phenotypically resistant to meropenem and ertapenem. The isolate harbored three successive blaGES genes encoding for GES-1, GES-5 and GES-5B in an incomplete class-I integron on a 12 kb plasmid (pEC19-AB02908; Acc. No. MT955355). The strain further encoded for virulence-associated genes typical for uropathogenic E. coli, which might hint at an increased pathogenic potential. The isolate produced the third carbapenemase detected from German livestock. The finding underlines the importance CPE monitoring and detailed characterization of new isolates.

8.
Microorganisms ; 8(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517147

RESUMEN

Resistance to carbapenems is a severe threat to human health. These last resort antimicrobials are indispensable for the treatment of severe human infections with multidrug-resistant Gram-negative bacteria. In accordance with their increasing medical impact, carbapenemase-producing Enterobacteriaceae (CPE) might be disseminated from colonized humans to non-human reservoirs (i.e., environment, animals, food). In Germany, the occurrence of CPE in livestock and food has been systematically monitored since 2016. In the 2019 monitoring, an OXA-48-producing E. coli (19-AB01443) was recovered from a fecal sample of a fattening pig. Phenotypic resistance was confirmed by broth microdilution and further characterized by PFGE, conjugation, and combined short-/long-read whole genome sequencing. This is the first detection of this resistance determinant in samples from German meat production. Molecular characterization and whole-genome sequencing revealed that the blaOXA-48 gene was located on a common pOXA-48 plasmid-prototype. This plasmid-type seems to be globally distributed among various bacterial species, but it was frequently associated with clinical Klebsiella spp. isolates. Currently, the route of introduction of this plasmid/isolate combination into the German pig production is unknown. We speculate that due to its strong correlation with human isolates a transmission from humans to livestock has occurred.

9.
Front Vet Sci ; 7: 627821, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585611

RESUMEN

The presence of bacteria carrying antimicrobial resistance (AMR) genes in wildlife is an indicator that resistant bacteria of human or livestock origin are widespread in the environment. In addition, it could represent an additional challenge for human health, since wild animals could act as efficient AMR reservoirs and epidemiological links between human, livestock and natural environments. The aim of this study was to investigate the occurrence and the antibiotic resistance patterns of several bacterial species in certain wild animals in Germany, including wild boars (Sus scrofa), roe deer (Capreolus capreolus) and wild ducks (family Anatidae, subfamily Anatinae) and geese (family Anatidae, subfamily Anserinae). In the framework of the German National Zoonoses Monitoring Program, samples from hunted wild boars, roe deer and wild ducks and geese were collected nationwide in 2016, 2017, and 2019, respectively. Fecal samples were tested for the presence of Salmonella spp. (in wild boars and wild ducks and geese), Campylobacter spp. (in roe deer and wild ducks and geese), Shiga toxin-producing Escherichia (E.) coli (STEC), commensal E. coli and extended-spectrum beta-lactamase- (ESBL) or ampicillinase class C (AmpC) beta-lactamase-producing E. coli (in wild boars, roe deer and wild ducks and geese). In addition, the presence of methicillin-resistant Staphylococcus aureus (MRSA) was investigated in nasal swabs from wild boars. Isolates obtained in the accredited regional state laboratories were submitted to the National Reference Laboratories (NRLs) for confirmation, characterization and phenotypic resistance testing using broth microdilution according to CLSI. AMR was assessed according to epidemiological cut-offs provided by EUCAST. Salmonella spp. were isolated from 13 of 552 (2.4%) tested wild boar fecal samples, but absent in all 101 samples from wild ducks and geese. Nine of the 11 isolates that were submitted to the NRL Salmonella were susceptible to all tested antimicrobial substances. Campylobacter spp. were isolated from four out of 504 (0.8%) roe deer fecal samples, but not from any of the samples from wild ducks and geese. Of the two isolates received in the NRL Campylobacter, neither showed resistance to any of the substances tested. From roe deer, 40.2% of the fecal samples (144 of 358) yielded STEC compared to 6.9% (37 of 536) from wild boars. In wild ducks and geese, no STEC isolates were found. Of 150 STEC isolates received in the NRL (24 from wild boars and 126 from roe deer), only one from each animal species showed resistance. Of the 219 isolates of commensal E. coli from wild boars tested for AMR, 210 were susceptible to all 14 tested substances (95.9%). In roe deer this proportion was even higher (263 of 269, 97.8%), whereas in wild ducks and geese this proportion was lower (41 of 49, 83.7%). Nevertheless, selective isolation of ESBL-/AmpC-producing E. coli yielded 6.5% (36 of 551) positive samples from wild boars, 2.3% (13 of 573) from roe deer and 9.8% (10 of 102) from wild ducks and geese. Among the 25 confirmed ESBL-/AmpC-producing isolates from wild boars, 14 (56.0%) showed resistance up to five classes of substances. This proportion was lower in roe deer (3 of 12, 25%) and higher in wild ducks and geese (7 of 10, 70%). None of the 577 nasal swabs from wild boars yielded MRSA. Results indicate that overall, the prevalence of resistant bacteria from certain wild animals in Germany is low, which may reflect not only the low level of exposure to antimicrobials but also the low level of resistant bacteria in the areas where these animals live and feed. However, despite this low prevalence, the patterns observed in bacteria from the wild animals included in this study are an indicator for specific resistance traits in the environment, including those to highest priority substances such as 3rd generation cephalosporins, fluoroquinolones and colistin. Therefore, also continuous monitoring of the occurrence of such bacteria in wildlife by selective isolation is advisable. Furthermore, the possible role of wildlife as reservoir and disperser of resistant bacteria would need to be assessed, as wild animals, and in particular wild ducks and geese could become spreaders of resistant bacteria given their capacity for long-range movements.

10.
Microb Drug Resist ; 26(2): 169-177, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31526229

RESUMEN

In this investigation, data on antimicrobial resistance (AMR) profiles of 213 Gallibacterium anatis isolates were determined from 93 laying hens originating from 39 flocks. Each flock was sampled three times during its life time for the presence of G. anatis. The broth microdilution method was applied comprising 21 antimicrobial substances. Multidrug resistance was found in 96.2% of the G. anatis isolates. Most of the isolates were resistant to tetracycline (89.2%), tylosin (94.8%), enrofloxacin (58.2%), nalidixic acid (77.4%), and sulfamethoxazole (77.0%). Resistance against antimicrobial substances increased significantly with the age of birds. A total of 99 different AMR profiles were detected. On flock level, different AMR profiles were found in 71.8% of the flocks independent of the sampling time point. On bird level, identical AMR profiles were mostly found in isolates originating from the same organ of a single bird, but 22 such paired isolates differed in their AMR profile. Variations of AMR profiles were found within isolates from a single bird, but from different organs. Isolates from systemic organs were significantly more resistant to different antimicrobial substances compared to isolates from the reproductive tract. No influence could be found in regard to an increase of resistance and applied antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Pollos/microbiología , Pasteurellaceae/efectos de los fármacos , Enfermedades de las Aves de Corral/microbiología , Factores de Edad , Animales , Farmacorresistencia Bacteriana Múltiple , Femenino , Pruebas de Sensibilidad Microbiana , Pasteurellaceae/aislamiento & purificación
11.
Front Microbiol ; 10: 2256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632372

RESUMEN

A few reports indicate that livestock might represent a new reservoir for carbapenemase-producing Enterobacteriaceae (CPE). In 2015, VIM-1-producing Escherichia coli were detected at slaughter in colon contents of animals from a German fattening pig farm within the national monitoring on ESBL-producing E. coli. In this study, pooled faces samples from pigs, as well as samples from the barn surrounding environment of this fattening farm were taken, to evaluate the dissemination of CPEs. Several modifications of the culture-dependent detection procedure were investigated for their potential to improve the sensitivity of the CPE isolation method. The current reference procedure was adapted by adding a real-time PCR pre-screening and additional enrichment steps. It was possible to isolate 32 VIM-1-producing E. coli from four fecal samples of three different barns using two serial enrichment steps in combination with real-time PCR and selective agar plates. By genetic typing, we confirmed the presence of two E. coli clonal lineages circulating on this particular farm: one was harboring the bla VIM- 1 on an IncHI2 plasmid while the second lineage carried the gene on the chromosome. Despite its different locations, the bla VIM- 1 gene was harbored on a class 1 integron in both clonal lineages. Whole-genome sequencing revealed that the VIM-1-carrying plasmids exhibited only slight variability in its compositions and sizes. We assume that the prevalence of CPEs in animal production in Germany and other European countries might be underestimated and there is a concern of further spread of VIM-1-producing bacteria in German livestock and food.

12.
Microbiologyopen ; 8(11): e900, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31328433

RESUMEN

The presence of multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus (MRSA) in retail meat is one of the current concerns of the public health authorities. Bacterial cross-contamination and recontamination during household food preparation could play an important role in the dissemination of such bacteria, and therefore could contribute to a serious health problem, more specifically for immunocompromised people. In order to evaluate the importance of such events, a probabilistic model was developed to estimate the likelihood and extent of cross-contamination and recontamination and the burden of MRSA from contaminated raw chicken meat via hands and kitchen utensils in a serving (consisting on a slice of bread and a piece of grilled chicken meat) during a household barbecue in Germany. A modular design was used, taking into account the chronological order of the routines during the barbecue event, and Monte Carlo simulations were applied. Available data on the prevalence and burden of MRSA in chicken meat at retail in Germany were used as starting point and were incorporated in the model as probability distributions. The probabilities and extent of bacterial transfer between food items and kitchen utensils (referred to as "Objects") and the routines performed during food preparation (referred to as "Actions") specified by their probabilities of occurrence were incorporated as the main input parameters. The model was set up in R 3.5.0 and converted to a standardized format (FSKX file). Therefore, the code can be easily accessed, evaluated, modified, and reused for different purposes. The present study contributes to the quantification of consumer exposure to MRSA through food consumption once contaminated food has entered the household kitchen. Even when the MRSA prevalence and bacterial load in retail chicken meat in Germany are low, resistant bacteria can reach the consumer due to cross-contamination and recontamination events. The results show that the probability of one CFU to be transferred from the contaminated raw chicken meat to the final serving and the number of MRSA bacteria transferred due to cross-contamination and recontamination events are in general low, being the contamination of the final serving more likely to occur via bread, rather than via grilled chicken. The results show that the prevalence of MRSA at retail highly influences the probability of the final serving to be contaminated. However, this study also highlights the importance of keeping good hygiene practices during the household food manipulation for reducing the spread of MRSA. The provision of the model in a standardized data format will allow an easy incorporation of the developed model into a complete quantitative microbial risk assessment model that will greatly help to estimate the risk of consumer exposure to MRSA through the consumption of contaminated food.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Contaminación de Alimentos , Manipulación de Alimentos/métodos , Carne/microbiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Modelos Estadísticos , Infecciones Estafilocócicas/transmisión , Animales , Pollos , Composición Familiar , Alemania , Humanos , Prevalencia , Infecciones Estafilocócicas/microbiología
13.
mSphere ; 4(3)2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189558

RESUMEN

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∼290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.


Asunto(s)
Enterobacter cloacae/genética , Infecciones por Enterobacteriaceae/veterinaria , Ganado/microbiología , Salmonella enterica/genética , Animales , Antibacterianos/farmacología , Cruzamiento , Carbapenémicos/farmacología , ADN Bacteriano/genética , Enterobacter cloacae/enzimología , Infecciones por Enterobacteriaceae/epidemiología , Escherichia coli/enzimología , Escherichia coli/genética , Granjas , Alemania/epidemiología , Pruebas de Sensibilidad Microbiana , Salmonelosis Animal/epidemiología , Salmonella enterica/enzimología , Serogrupo , Porcinos/microbiología , Secuenciación Completa del Genoma , beta-Lactamasas/genética
14.
Vet Microbiol ; 233: 52-60, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31176413

RESUMEN

The spread of extended-spectrum ß-lactamases (ESBLs) in Escherichia coli is a major public health issue and ESBL-producing bacteria are frequently reported in livestock. For the assessment of the role of the foodborne transmission pathway in Germany, detailed data on the prevalence and characteristics of isolates of food origin are necessary. The objective of this study was to describe the prevalence of cefotaxime resistant E. coli as well as ESBL/pAmpC-producing E. coli and their characteristics in foods in Germany. Out of 2256 food samples, the highest prevalence of cefotaxime resistant E. coli was observed in chicken meat (74.9%), followed by turkey meat (40.1%). Prevalence in beef, pork and minced meat was considerably lower (4.2-15.3%). Whereas 18.0% of the raw milk samples, collected at farm level were positive, this was true only for few cheese samples (1.3%). In one out of 399 vegetable samples a cefotaxime-resistant E. coli was isolated. ESBL resistance genes of the CTX-M-group (10.1% of all samples) were most frequently detected, followed by genes of the pAmpC (2.6%), SHV (2.0%) and TEM (0.8%) families. Distribution of ESBL/AmpC-encoding E. coli resistance genes and E. coli phylogroups was significantly different between the chicken related food samples and all other food items. Our study results reflect that consumers might get exposed to ESBL/pAmpC-producing E. coli through several food chains. These results together with those collected at primary production and in the human population in other studies will allow more detailed analysis of the foodborne pathways, considering transmission from livestock populations to food at retail and to consumers in Germany.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Microbiología de Alimentos , Carne/microbiología , beta-Lactamasas/genética , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Cefotaxima/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/enzimología , Infecciones por Escherichia coli/transmisión , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Alemania , Ganado/microbiología , Aves de Corral/microbiología , Prevalencia , Carne Roja/microbiología , Verduras/microbiología , beta-Lactamasas/biosíntesis
15.
Artículo en Inglés | MEDLINE | ID: mdl-31109975

RESUMEN

In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a blaNDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this blaNDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.


Asunto(s)
Plásmidos/genética , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enterica/genética , beta-Lactamasas/genética , Animales , Pollos , Conjugación Genética , Salmonella enterica/patogenicidad , Secuenciación Completa del Genoma
16.
Biomed Res Int ; 2018: 7309346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30426012

RESUMEN

Extended-spectrum beta-lactamase- (ESBL-) producing Enterobacteriaceae are frequently detected in poultry and fresh chicken meat. Due to the high prevalence, an impact on human colonization and the spread of antibiotic resistance into the environment is assumed. ESBL-producing Enterobacteriaceae can be transmitted along the broiler production chain but also their persistence is reported because of insufficient cleaning and disinfection. Processing of broiler chickens leads to a reduction of microbiological counts on the carcasses. However, processing steps like scalding, defeathering, and evisceration are critical concerning fecal contamination and, therefore, cross-contamination with bacterial strains. Respective intervention measures along the slaughter processing line aim at reducing the microbiological load on broiler carcasses as well as preventing cross-contamination. Published data on the impact of possible intervention measures against ESBL-producing Enterobacteriaceae are missing and, therefore, we focused on processing measures concerning Enterobacteriaceae, in particular E. coli or coliform counts, during processing of broiler chickens to identify possible hints for effective strategies to reduce these resistant bacteria. In total, 73 publications were analyzed and data on the quantitative reductions were extracted. Most investigations concentrated on scalding, postdefeathering washes, and improvements in the chilling process and were already published in and before 2008 (n=42, 58%). Therefore, certain measures may be already installed in slaughterhouse facilities today. The effect on eliminating ESBL-producing Enterobacteriaceae is questionable as there are still positive chicken meat samples found. A huge number of studies dealt with different applications of chlorine substances which are not approved in the European Union and the reduction level did not exceed 3 log10 values. None of the measures was able to totally eradicate Enterobacteriaceae from the broiler carcasses indicating the need to develop intervention measures to prevent contamination with ESBL-producing Enterobacteriaceae and, therefore, the exposure of humans and the further release of antibiotic resistances into the environment.


Asunto(s)
Pollos/microbiología , Enterobacteriaceae/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Carne/microbiología , Animales , Enterobacteriaceae/metabolismo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Enfermedades de las Aves de Corral/microbiología , beta-Lactamasas/metabolismo
17.
Genome Announc ; 6(26)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954902

RESUMEN

Carbapenems are an important class of ß-lactams and one of the last options for treating severe human infections. We present here the complete genome sequence of avian native carbapenemase-producing Salmonella enterica subsp. enterica serovar Corvallis strain 12-01738, harboring a blaNDM-1-carrying IncA/C2 plasmid, isolated in 2012 from a wild bird (Milvus migrans) in Germany.

18.
Artículo en Inglés | MEDLINE | ID: mdl-29437622

RESUMEN

The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) in wildlife and livestock animals pose an important safety concern for public health. With our in vivo broiler chicken infection study, we investigated the transfer and experimental microevolution of the blaNDM-1-carrying IncA/C2 plasmid (pRH-1238) introduced by avian native Salmonella enterica subsp. enterica serovar Corvallis without inducing antibiotic selection pressure. We evaluated the dependency of the time point of inoculation on donor (S Corvallis [12-SA01738]) and plasmid-free Salmonella recipient [d-tartrate-fermenting (d-Ta+) S Paratyphi B (13-SA01617), referred to here as S Paratyphi B (d-Ta+)] excretion by quantifying their excretion dynamics. Using plasmid profiling by S1 nuclease-restricted pulsed-field gel electrophoresis, we gained insight into the variability of the native plasmid content among S Corvallis reisolates as well as plasmid acquisition in S Paratyphi B (d-Ta+) and the enterobacterial gut microflora. Whole-genome sequencing enabled us to gain an in-depth insight into the microevolution of plasmid pRH-1238 in S Corvallis and enterobacterial recipient isolates. Our study revealed that the fecal excretion of avian native carbapenemase-producing S Corvallis is significantly higher than that of S Paratyphi (d-Ta+) and is not hampered by S Paratyphi (d-Ta+). Acquisition of pRH-1238 in other Enterobacteriaceae and several events of plasmid pRH-1238 transfer to different Escherichia coli sequence types and Klebsiella pneumoniae demonstrated an interspecies broad host range. Regardless of the microevolutionary structural deletions in pRH-1238, the single carbapenem resistance marker blaNDM-1 was maintained on pRH-1238 throughout the trial. Furthermore, we showed the importance of the gut E. coli population as a vector of pRH-1238. In a potential scenario of the introduction of NDM-1-producing S Corvallis into a broiler flock, the pRH-1238 plasmid could persist and spread to a broad host range even in the absence of antibiotic pressure.


Asunto(s)
Enterobacteriaceae/genética , Salmonella enterica/genética , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Pollos , Electroforesis en Gel de Campo Pulsado , Enterobacteriaceae/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Salmonella enterica/efectos de los fármacos , beta-Lactamasas/genética
20.
Vet Microbiol ; 200: 124-129, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26654218

RESUMEN

Since recently Enterobacteriaceae carrying blaVIM-1 genes have been isolated in German animal husbandries, the monitoring of carbapenemase producing Enterobacteriaceae (CPE) in livestock became a major topic within the European Union. Nevertheless, due to missing surveillance studies the worldwide situation in livestock and livestock associated surroundings might still be underestimated. The here described study provides an overview of the CPE-prevalence in German pig-fattening farms during the years 2011-2013 (period when previously described blaVIM-1 findings occurred on pig-fattening farms (Efsa, 2011; Fischer et al., 2012, 2013a)). Therefore, a collection of 238 bacterial anacultures derived from pooled faeces and boot swab samples, collected in a cross-sectional study including 58 pig-fattening farms throughout Germany, were investigated. The bacteria were selected on MacConkey agar plates containing 0.125µg/ml meropenem. Enterobacteriaceae which were able to grow on these plates were further investigated for the presence of carbapenemase genes. Out of eight CPE-suspicious strains, two Escherichia (E.) coli strains-deriving from the same farm-contained the carbapenemase gene blaVIM-1. For the remaining six Enterobacteriaceae it seems to be likely that they possess other resistance mechanisms, leading to reduced carbapenem susceptibility. Based on the obtained results, the overall CPE prevalence for German pig-fattening farms, sampled during the years 2011-2013 was 1.7%; 95% CI: 0-10. However, as it is of great importance to prevent a further spread of these bacteria between farms and livestock populations as well as their introduction into the food chain, an understanding of their routes of introduction and spread in combination with intensified monitoring programs are considered necessary.


Asunto(s)
Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/genética , Infecciones por Enterobacteriaceae/veterinaria , Enterobacteriaceae/enzimología , Enfermedades de los Porcinos/microbiología , Animales , Estudios Transversales , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Granjas , Heces/microbiología , Alemania/epidemiología , Integrones/genética , Prevalencia , Porcinos , Enfermedades de los Porcinos/epidemiología , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...