Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Semantics ; 12(1): 17, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425897

RESUMEN

BACKGROUND: In recent years a large volume of clinical genomics data has become available due to rapid advances in sequencing technologies. Efficient exploitation of this genomics data requires linkage to patient phenotype profiles. Current resources providing disease-phenotype associations are not comprehensive, and they often do not have broad coverage of the disease terminologies, particularly ICD-10, which is still the primary terminology used in clinical settings. METHODS: We developed two approaches to gather disease-phenotype associations. First, we used a text mining method that utilizes semantic relations in phenotype ontologies, and applies statistical methods to extract associations between diseases in ICD-10 and phenotype ontology classes from the literature. Second, we developed a semi-automatic way to collect ICD-10-phenotype associations from existing resources containing known relationships. RESULTS: We generated four datasets. Two of them are independent datasets linking diseases to their phenotypes based on text mining and semi-automatic strategies. The remaining two datasets are generated from these datasets and cover a subset of ICD-10 classes of common diseases contained in UK Biobank. We extensively validated our text mined and semi-automatically curated datasets by: comparing them against an expert-curated validation dataset containing disease-phenotype associations, measuring their similarity to disease-phenotype associations found in public databases, and assessing how well they could be used to recover gene-disease associations using phenotype similarity. CONCLUSION: We find that our text mining method can produce phenotype annotations of diseases that are correct but often too general to have significant information content, or too specific to accurately reflect the typical manifestations of the sporadic disease. On the other hand, the datasets generated from integrating multiple knowledgebases are more complete (i.e., cover more of the required phenotype annotations for a given disease). We make all data freely available at https://doi.org/10.5281/zenodo.4726713 .


Asunto(s)
Minería de Datos , Fenómica , Bases de Datos Factuales , Humanos , Bases del Conocimiento , Fenotipo
2.
Bioinformatics ; 37(17): 2722-2729, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33682875

RESUMEN

MOTIVATION: Infectious diseases caused by novel viruses have become a major public health concern. Rapid identification of virus-host interactions can reveal mechanistic insights into infectious diseases and shed light on potential treatments. Current computational prediction methods for novel viruses are based mainly on protein sequences. However, it is not clear to what extent other important features, such as the symptoms caused by the viruses, could contribute to a predictor. Disease phenotypes (i.e. signs and symptoms) are readily accessible from clinical diagnosis and we hypothesize that they may act as a potential proxy and an additional source of information for the underlying molecular interactions between the pathogens and hosts. RESULTS: We developed DeepViral, a deep learning based method that predicts protein-protein interactions (PPI) between humans and viruses. Motivated by the potential utility of infectious disease phenotypes, we first embedded human proteins and viruses in a shared space using their associated phenotypes and functions, supported by formalized background knowledge from biomedical ontologies. By jointly learning from protein sequences and phenotype features, DeepViral significantly improves over existing sequence-based methods for intra- and inter-species PPI prediction. AVAILABILITY AND IMPLEMENTATION: Code and datasets for reproduction and customization are available at https://github.com/bio-ontology-research-group/DeepViral. Prediction results for 14 virus families are available at https://doi.org/10.5281/zenodo.4429824. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Clin Genet ; 98(6): 555-561, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32869858

RESUMEN

In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow-derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real-time PCR (RT-qPCR)-based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679-1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT-qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Proteínas de la Membrana/genética , Adolescente , Niño , Consanguinidad , Discapacidades del Desarrollo/fisiopatología , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Masculino , Mutación/genética , Linaje , Sitios de Empalme de ARN/genética , Arabia Saudita/epidemiología , Secuenciación del Exoma
4.
BMC Med Genomics ; 13(1): 103, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680510

RESUMEN

BACKGROUND: Testing strategies is crucial for genetics clinics and testing laboratories. In this study, we tried to compare the hit rate between solo and trio and trio plus testing and between trio and sibship testing. Finally, we studied the impact of extended family analysis, mainly in complex and unsolved cases. METHODS: Three cohorts were used for this analysis: one cohort to assess the hit rate between solo, trio and trio plus testing, another cohort to examine the impact of the testing strategy of sibship genome vs trio-based analysis, and a third cohort to test the impact of an extended family analysis of up to eight family members to lower the number of candidate variants. RESULTS: The hit rates in solo, trio and trio plus testing were 39, 40, and 41%, respectively. The total number of candidate variants in the sibship testing strategy was 117 variants compared to 59 variants in the trio-based analysis. We noticed that the average number of coding candidate variants in trio-based analysis was 1192 variants and 26,454 noncoding variants, and this number was lowered by 50-75% after adding additional family members, with up to two coding and 66 noncoding homozygous variants only, in families with eight family members. CONCLUSION: There was no difference in the hit rate between solo and extended family members. Trio-based analysis was a better approach than sibship testing, even in a consanguineous population. Finally, each additional family member helped to narrow down the number of variants by 50-75%. Our findings could help clinicians, researchers and testing laboratories select the most cost-effective and appropriate sequencing approach for their patients. Furthermore, using extended family analysis is a very useful tool for complex cases with novel genes.


Asunto(s)
Consanguinidad , Exoma , Familia , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Variación Genética , Adulto , Niño , Femenino , Humanos , Masculino , Estudios Retrospectivos , Secuenciación del Exoma
5.
Orphanet J Rare Dis ; 15(1): 146, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527280

RESUMEN

BACKGROUND: Inborn errors of metabolism (IEM) represent a subclass of rare inherited diseases caused by a wide range of defects in metabolic enzymes or their regulation. Of over a thousand characterized IEMs, only about half are understood at the molecular level, and overall the development of treatment and management strategies has proved challenging. An overview of the changing landscape of therapeutic approaches is helpful in assessing strategic patterns in the approach to therapy, but the information is scattered throughout the literature and public data resources. RESULTS: We gathered data on therapeutic strategies for 300 diseases into the Drug Database for Inborn Errors of Metabolism (DDIEM). Therapeutic approaches, including both successful and ineffective treatments, were manually classified by their mechanisms of action using a new ontology. CONCLUSIONS: We present a manually curated, ontologically formalized knowledgebase of drugs, therapeutic procedures, and mitigated phenotypes. DDIEM is freely available through a web interface and for download at http://ddiem.phenomebrowser.net.


Asunto(s)
Bases de Datos Farmacéuticas , Errores Innatos del Metabolismo , Humanos , Fenotipo , Enfermedades Raras/tratamiento farmacológico
6.
J Biomed Semantics ; 11(1): 1, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31931870

RESUMEN

BACKGROUND: Ontologies are widely used across biology and biomedicine for the annotation of databases. Ontology development is often a manual, time-consuming, and expensive process. Automatic or semi-automatic identification of classes that can be added to an ontology can make ontology development more efficient. RESULTS: We developed a method that uses machine learning and word embeddings to identify words and phrases that are used to refer to an ontology class in biomedical Europe PMC full-text articles. Once labels and synonyms of a class are known, we use machine learning to identify the super-classes of a class. For this purpose, we identify lexical term variants, use word embeddings to capture context information, and rely on automated reasoning over ontologies to generate features, and we use an artificial neural network as classifier. We demonstrate the utility of our approach in identifying terms that refer to diseases in the Human Disease Ontology and to distinguish between different types of diseases. CONCLUSIONS: Our method is capable of discovering labels that refer to a class in an ontology but are not present in an ontology, and it can identify whether a class should be a subclass of some high-level ontology classes. Our approach can therefore be used for the semi-automatic extension and quality control of ontologies. The algorithm, corpora and evaluation datasets are available at https://github.com/bio-ontology-research-group/ontology-extension.


Asunto(s)
Ontologías Biológicas , Automatización , Enfermedad , Humanos , Red Nerviosa
7.
J Biomed Semantics ; 10(1): 15, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533864

RESUMEN

BACKGROUND: Infectious diseases claim millions of lives especially in the developing countries each year. Identification of causative pathogens accurately and rapidly plays a key role in the success of treatment. To support infectious disease research and mechanisms of infection, there is a need for an open resource on pathogen-disease associations that can be utilized in computational studies. A large number of pathogen-disease associations is available from the literature in unstructured form and we need automated methods to extract the data. RESULTS: We developed a text mining system designed for extracting pathogen-disease relations from literature. Our approach utilizes background knowledge from an ontology and statistical methods for extracting associations between pathogens and diseases. In total, we extracted a total of 3420 pathogen-disease associations from literature. We integrated our literature-derived associations into a database which links pathogens to their phenotypes for supporting infectious disease research. CONCLUSIONS: To the best of our knowledge, we present the first study focusing on extracting pathogen-disease associations from publications. We believe the text mined data can be utilized as a valuable resource for infectious disease research. All the data is publicly available from https://github.com/bio-ontology-research-group/padimi and through a public SPARQL endpoint from http://patho.phenomebrowser.net/ .


Asunto(s)
Ontologías Biológicas , Enfermedades Transmisibles , Minería de Datos/métodos , Internet
8.
Sci Data ; 6(1): 79, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160594

RESUMEN

Understanding the relationship between the pathophysiology of infectious disease, the biology of the causative agent and the development of therapeutic and diagnostic approaches is dependent on the synthesis of a wide range of types of information. Provision of a comprehensive and integrated disease phenotype knowledgebase has the potential to provide novel and orthogonal sources of information for the understanding of infectious agent pathogenesis, and support for research on disease mechanisms. We have developed PathoPhenoDB, a database containing pathogen-to-phenotype associations. PathoPhenoDB relies on manual curation of pathogen-disease relations, on ontology-based text mining as well as manual curation to associate host disease phenotypes with infectious agents. Using Semantic Web technologies, PathoPhenoDB also links to knowledge about drug resistance mechanisms and drugs used in the treatment of infectious diseases. PathoPhenoDB is accessible at http://patho.phenomebrowser.net/ , and the data are freely available through a public SPARQL endpoint.


Asunto(s)
Enfermedades Transmisibles , Interacciones Huésped-Patógeno , Fenotipo , Bases de Datos Factuales , Humanos , Web Semántica , Interfaz Usuario-Computador
9.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30809638

RESUMEN

Gene-phenotype associations play an important role in understanding the disease mechanisms which is a requirement for treatment development. A portion of gene-phenotype associations are observed mainly experimentally and made publicly available through several standard resources such as MGI. However, there is still a vast amount of gene-phenotype associations buried in the biomedical literature. Given the large amount of literature data, we need automated text mining tools to alleviate the burden in manual curation of gene-phenotype associations and to develop comprehensive resources. In this study, we present an ontology-based approach in combination with statistical methods to text mine gene-phenotype associations from the literature. Our method achieved AUC values of 0.90 and 0.75 in recovering known gene-phenotype associations from HPO and MGI respectively. We posit that candidate genes and their relevant diseases should be expressed with similar phenotypes in publications. Thus, we demonstrate the utility of our approach by predicting disease candidate genes based on the semantic similarities of phenotypes associated with genes and diseases. To the best of our knowledge, this is the first study using an ontology based approach to extract gene-phenotype associations from the literature. We evaluated our disease candidate prediction model on the gene-disease associations from MGI. Our model achieved AUC values of 0.90 and 0.87 on OMIM (human) and MGI (mouse) datasets of gene-disease associations respectively. Our manual analysis on the text mined data revealed that our method can accurately extract gene-phenotype associations which are not currently covered by the existing public gene-phenotype resources. Overall, results indicate that our method can precisely extract known as well as new gene-phenotype associations from literature. All the data and methods are available at https://github.com/bio-ontology-research-group/genepheno.


Asunto(s)
Minería de Datos , Ontología de Genes , Estudios de Asociación Genética , Bases de Datos Genéticas , Fenotipo
10.
J Biomed Semantics ; 8(1): 20, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587637

RESUMEN

BACKGROUND: We present the Europe PMC literature component of Open Targets - a target validation platform that integrates various evidence to aid drug target identification and validation. The component identifies target-disease associations in documents and ranks the documents based on their confidence from the Europe PMC literature database, by using rules utilising expert-provided heuristic information. The confidence score of a given document represents how valuable the document is in the scope of target validation for a given target-disease association by taking into account the credibility of the association based on the properties of the text. The component serves the platform regularly with the up-to-date data since December, 2015. RESULTS: Currently, there are a total number of 1168365 distinct target-disease associations text mined from >26 million PubMed abstracts and >1.2 million Open Access full text articles. Our comparative analyses on the current available evidence data in the platform revealed that 850179 of these associations are exclusively identified by literature mining. CONCLUSIONS: This component helps the platform's users by providing the most relevant literature hits for a given target and disease. The text mining evidence along with the other types of evidence can be explored visually through https://www.targetvalidation.org and all the evidence data is available for download in json format from https://www.targetvalidation.org/downloads/data .


Asunto(s)
Ontologías Biológicas , Terapia Molecular Dirigida , Minería de Datos , Documentación , Publicaciones , Reproducibilidad de los Resultados
11.
Nucleic Acids Res ; 45(D1): D985-D994, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899665

RESUMEN

We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org.


Asunto(s)
Biología Computacional/métodos , Terapia Molecular Dirigida , Motor de Búsqueda , Programas Informáticos , Bases de Datos Factuales , Humanos , Terapia Molecular Dirigida/métodos , Reproducibilidad de los Resultados , Navegador Web , Flujo de Trabajo
12.
BMC Bioinformatics ; 18(Suppl 17): 561, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29322912

RESUMEN

BACKGROUND: Cell lines and cell types are extensively studied in biomedical research yielding to a significant amount of publications each year. Identifying cell lines and cell types precisely in publications is crucial for science reproducibility and knowledge integration. There are efforts for standardisation of the cell nomenclature based on ontology development to support FAIR principles of the cell knowledge. However, it is important to analyse the usage of cell nomenclature in publications at a large scale for understanding the level of uptake of cell nomenclature in literature by scientists. In this study, we analyse the usage of cell nomenclature, both in Vivo, and in Vitro in biomedical literature by using text mining methods and present our results. RESULTS: We identified 59% of the cell type classes in the Cell Ontology and 13% of the cell line classes in the Cell Line Ontology in the literature. Our analysis showed that cell line nomenclature is much more ambiguous compared to the cell type nomenclature. However, trends indicate that standardised nomenclature for cell lines and cell types are being increasingly used in publications by the scientists. CONCLUSIONS: Our findings provide an insight to understand how experimental cells are described in publications and may allow for an improved standardisation of cell type and cell line nomenclature as well as can be utilised to develop efficient text mining applications on cell types and cell lines. All data generated in this study is available at https://github.com/shenay/CellNomenclatureStudy.


Asunto(s)
Células/clasificación , Minería de Datos/métodos , Medical Subject Headings , Publicaciones , Terminología como Asunto , Línea Celular , Bases de Datos Factuales , Humanos
13.
J Biomed Semantics ; 6: 7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774284

RESUMEN

BACKGROUND: As the availability of open access full text research articles increases, so does the need for sophisticated search services that make the most of this new content. Here, we present a new feature available in Europe PMC that allows selected sections of full text articles to be searched, including figures and reference lists. Users can now search particular parts of an article, reducing noise and allowing fine-tuning of searches. RESULTS: To the best of our knowledge, Europe PMC is the first service that provides a granular literature search by allowing users to target their search to particular sections of articles. This new functionality is based on a heuristic algorithm that identifies and categorises article sections into 17 pre-defined categories based on the section heading. The tagger's performance is measured against a manually curated dataset consisting of 100 full text articles with an F-score of 98.02%. CONCLUSIONS: The section search is available from the advanced search within Europe PMC (http://europepmc.org). The source code is freely available from http://europepmc.org/ftp/oa/SectionTagger/.

14.
J Biomed Semantics ; 6: 1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789152

RESUMEN

BACKGROUND: In this study, we present an analysis of data citation practices in full text research articles and their corresponding supplementary data files, made available in the Open Access set of articles from Europe PubMed Central. Our aim is to investigate whether supplementary data files should be considered as a source of information for integrating the literature with biomolecular databases. RESULTS: Using text-mining methods to identify and extract a variety of core biological database accession numbers, we found that the supplemental data files contain many more database citations than the body of the article, and that those citations often take the form of a relatively small number of articles citing large collections of accession numbers in text-based files. Moreover, citation of value-added databases derived from submission databases (such as Pfam, UniProt or Ensembl) is common, demonstrating the reuse of these resources as datasets in themselves. All the database accession numbers extracted from the supplementary data are publicly accessible from http://dx.doi.org/10.5281/zenodo.11771. CONCLUSIONS: Our study suggests that supplementary data should be considered when linking articles with data, in curation pipelines, and in information retrieval tasks in order to make full use of the entire research article. These observations highlight the need to improve the management of supplemental data in general, in order to make this information more discoverable and useful.

15.
J Biomed Semantics ; 4(1): 28, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24112383

RESUMEN

MOTIVATION: The identification of protein and gene names (PGNs) from the scientific literature requires semantic resources: Terminological and lexical resources deliver the term candidates into PGN tagging solutions and the gold standard corpora (GSC) train them to identify term parameters and contextual features. Ideally all three resources, i.e. corpora, lexica and taggers, cover the same domain knowledge, and thus support identification of the same types of PGNs and cover all of them. Unfortunately, none of the three serves as a predominant standard and for this reason it is worth exploring, how these three resources comply with each other. We systematically compare different PGN taggers against publicly available corpora and analyze the impact of the included lexical resource in their performance. In particular, we determine the performance gains through false positive filtering, which contributes to the disambiguation of identified PGNs. RESULTS: In general, machine learning approaches (ML-Tag) for PGN tagging show higher F1-measure performance against the BioCreative-II and Jnlpba GSCs (exact matching), whereas the lexicon based approaches (LexTag) in combination with disambiguation methods show better results on FsuPrge and PennBio. The ML-Tag solutions balance precision and recall, whereas the LexTag solutions have different precision and recall profiles at the same F1-measure across all corpora. Higher recall is achieved with larger lexical resources, which also introduce more noise (false positive results). The ML-Tag solutions certainly perform best, if the test corpus is from the same GSC as the training corpus. As expected, the false negative errors characterize the test corpora and - on the other hand - the profiles of the false positive mistakes characterize the tagging solutions. Lex-Tag solutions that are based on a large terminological resource in combination with false positive filtering produce better results, which, in addition, provide concept identifiers from a knowledge source in contrast to ML-Tag solutions. CONCLUSION: The standard ML-Tag solutions achieve high performance, but not across all corpora, and thus should be trained using several different corpora to reduce possible biases. The LexTag solutions have different profiles for their precision and recall performance, but with similar F1-measure. This result is surprising and suggests that they cover a portion of the most common naming standards, but cope differently with the term variability across the corpora. The false positive filtering applied to LexTag solutions does improve the results by increasing their precision without compromising significantly their recall. The harmonisation of the annotation schemes in combination with standardized lexical resources in the tagging solutions will enable their comparability and will pave the way for a shared standard.

16.
J Biomed Semantics ; 4(1): 19, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24034148

RESUMEN

BACKGROUND: Named entity recognition (NER) is an essential step in automatic text processing pipelines. A number of solutions have been presented and evaluated against gold standard corpora (GSC). The benchmarking against GSCs is crucial, but left to the individual researcher. Herewith we present a League Table web site, which benchmarks NER solutions against selected public GSCs, maintains a ranked list and archives the annotated corpus for future comparisons. RESULTS: The web site enables access to the different GSCs in a standardized format (IeXML). Upon submission of the annotated corpus the user has to describe the specification of the used solution and then uploads the annotated corpus for evaluation. The performance of the system is measured against one or more GSCs and the results are then added to the web site ("League Table"). It displays currently the results from publicly available NER solutions from the Whatizit infrastructure for future comparisons. CONCLUSION: The League Table enables the evaluation of NER solutions in a standardized infrastructure and monitors the results long-term. For access please go to http://wwwdev.ebi.ac.uk/Rebholz-srv/calbc/assessmentGSC/. CONTACT: rebholz@ifi.uzh.ch.

17.
PLoS One ; 8(5): e63184, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23734176

RESUMEN

Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services.


Asunto(s)
Minería de Datos/métodos , Minería de Datos/estadística & datos numéricos , Bases de Datos Factuales , Internet , Minería de Datos/tendencias , Bases de Datos Bibliográficas , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Europa (Continente) , Humanos , Reproducibilidad de los Resultados , Estados Unidos
18.
J Biomed Semantics ; 2 Suppl 5: S11, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-22166494

RESUMEN

BACKGROUND: Competitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions. RESULTS: All four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed annotated data sets for an evaluation against the SSC-I. CPs could ignore the training data and deliver the annotations from their genuine annotation system, or could train a machine-learning approach on the provided pre-annotated data. In general, the performances of the annotation solutions were lower for entities from the categories CHED and PRGE in comparison to the identification of entities categorized as DISO and SPE. The best performance over all semantic groups were achieved from two annotation solutions that have been trained on the SSC-I.The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if the participant did not make use of the annotated data set from the SSC-I for training purposes. The performances of the participants' solutions were again measured against the SSC-II. The performances of the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE. CONCLUSIONS: The SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the annotation solutions against the SSC-II leads to better performance for the CPs' annotation solutions in comparison to the SSC-I.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...