Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2207831120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897972

RESUMEN

During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.


Asunto(s)
Propofol , Humanos , Propofol/farmacología , Estado de Conciencia , Electroencefalografía , Encéfalo , Tálamo , Inconsciencia/inducido químicamente , Vías Nerviosas , Corteza Cerebral
2.
PLoS Comput Biol ; 17(8): e1009280, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407069

RESUMEN

Ketamine is an NMDA receptor antagonist commonly used to maintain general anesthesia. At anesthetic doses, ketamine causes high power gamma (25-50 Hz) oscillations alternating with slow-delta (0.1-4 Hz) oscillations. These dynamics are readily observed in local field potentials (LFPs) of non-human primates (NHPs) and electroencephalogram (EEG) recordings from human subjects. However, a detailed statistical analysis of these dynamics has not been reported. We characterize ketamine's neural dynamics using a hidden Markov model (HMM). The HMM observations are sequences of spectral power in seven canonical frequency bands between 0 to 50 Hz, where power is averaged within each band and scaled between 0 and 1. We model the observations as realizations of multivariate beta probability distributions that depend on a discrete-valued latent state process whose state transitions obey Markov dynamics. Using an expectation-maximization algorithm, we fit this beta-HMM to LFP recordings from 2 NHPs, and separately, to EEG recordings from 9 human subjects who received anesthetic doses of ketamine. Our beta-HMM framework provides a useful tool for experimental data analysis. Together, the estimated beta-HMM parameters and optimal state trajectory revealed an alternating pattern of states characterized primarily by gamma and slow-delta activities. The mean duration of the gamma activity was 2.2s([1.7,2.8]s) and 1.2s([0.9,1.5]s) for the two NHPs, and 2.5s([1.7,3.6]s) for the human subjects. The mean duration of the slow-delta activity was 1.6s([1.2,2.0]s) and 1.0s([0.8,1.2]s) for the two NHPs, and 1.8s([1.3,2.4]s) for the human subjects. Our characterizations of the alternating gamma slow-delta activities revealed five sub-states that show regular sequential transitions. These quantitative insights can inform the development of rhythm-generating neuronal circuit models that give mechanistic insights into this phenomenon and how ketamine produces altered states of arousal.


Asunto(s)
Encéfalo/efectos de los fármacos , Electroencefalografía/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Macaca/fisiología , Algoritmos , Animales , Encéfalo/fisiología , Ritmo Gamma/fisiología , Humanos , Cadenas de Markov , Probabilidad
3.
Anesth Analg ; 131(5): 1529-1539, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079876

RESUMEN

BACKGROUND: A number of recent studies have reported an association between intraoperative burst suppression and postoperative delirium. These studies suggest that anesthesia-induced burst suppression may be an indicator of underlying brain vulnerability. A prominent feature of electroencephalogram (EEG) under propofol and sevoflurane anesthesia is the frontal alpha oscillation. This frontal alpha oscillation is known to decline significantly during aging and is generated by prefrontal brain regions that are particularly prone to age-related neurodegeneration. Given that burst suppression and frontal alpha oscillations are both associated with brain vulnerability, we hypothesized that anesthesia-induced frontal alpha power could also be associated with burst suppression. METHODS: We analyzed EEG data from a previously reported cohort in which 155 patients received propofol (n = 60) or sevoflurane (n = 95) as the primary anesthetic. We computed the EEG spectrum during stable anesthetic maintenance and identified whether or not burst suppression occurred during the anesthetic. We characterized the relationship between burst suppression and alpha power using logistic regression. We proposed 5 different models consisting of different combinations of potential contributing factors associated with burst suppression: (1) a Base Model consisting of alpha power; (2) an Extended Mechanistic Model consisting of alpha power, age, and drug dosing information; (3) a Clinical Confounding Factors Model consisting of alpha power, hypotension, and other confounds; (4) a Simplified Model consisting only of alpha power and propofol bolus administration; and (5) a Full Model consisting of all of these variables to control for as much confounding as possible. RESULTS: All models show a consistent significant association between alpha power and burst suppression while adjusting for different sets of covariates, all with consistent effect size estimates. Using the Simplified Model, we found that for each decibel decrease in alpha power, the odds of experiencing burst suppression increased by 1.33-fold. CONCLUSIONS: In this study, we show how a decrease in anesthesia-induced frontal alpha power is associated with an increased propensity for burst suppression, in a manner that captures individualized information above and beyond a patient's chronological age. Lower frontal alpha band power is strongly associated with higher propensity for burst suppression and, therefore, potentially higher risk of postoperative neurocognitive disorders. We hypothesize that low frontal alpha power and increased propensity for burst suppression together characterize a "vulnerable brain" phenotype under anesthesia that could be mechanistically linked to brain metabolism, cognition, and brain aging.


Asunto(s)
Ritmo alfa/efectos de los fármacos , Anestesia/efectos adversos , Encéfalo/efectos de los fármacos , Electroencefalografía/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/farmacología , Química Encefálica/efectos de los fármacos , Cognición , Estudios de Cohortes , Relación Dosis-Respuesta a Droga , Delirio del Despertar/diagnóstico , Delirio del Despertar/fisiopatología , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Propofol/administración & dosificación , Propofol/farmacología , Adulto Joven
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 7076-7079, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947467

RESUMEN

Burst suppression is an electroencephalogram (EEG) pattern associated with profoundly inactivated brain states characterized by cerebral metabolic depression. This pattern is distinguished by short-duration band-limited electrical activity (bursts) interspersed between relatively near-isoelectric periods (suppressions). Prior work in neurophysiology suggests that burst and suppression segments are respectively associated with consumption and regeneration of adenosine triphosphate resource in cortical networks. This indicates that once a suppression (or, burst) segment begins, the propensity to switch out of the state gradually increases with duration spent in the state. Prior EEG monitoring frameworks that track the brain state during burst suppression by tracking the estimated fraction of time spent in suppression, relative to bursts, do not incorporate this information. In this work, we incorporate this information within a hidden semi-Markov model (HSMM) wherein two states (burst & suppression) stochastically switch between each other using sojourn-time dependent transition probabilities. We demonstrate the HSMM's utility in analyzing clinical data by estimating the state probabilities, the optimal state sequence, and the brain's metabolic activation level characterized by parameters governing sojourn-time dependence in transition probabilities. The HSMM-based approach proposed here provides a novel statistical framework that advances the state-of-the-art in analyzing burst suppression EEG.


Asunto(s)
Electroencefalografía , Fenómenos Fisiológicos del Sistema Nervioso , Encéfalo , Probabilidad
5.
J Neuroimaging ; 28(2): 173-182, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29319208

RESUMEN

BACKGROUND AND PURPOSE: Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. METHODS: Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. RESULTS: Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. CONCLUSIONS: Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Artefactos , Encéfalo/cirugía , Neoplasias Encefálicas/cirugía , Imagen Eco-Planar/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Estudios Retrospectivos , Sustancia Blanca/cirugía
6.
Neuroimage Clin ; 13: 138-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27981029

RESUMEN

We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using tractography-based registration to the atlas and spectral embedding of patient tractography. Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients. Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts (motor), which were identified in all patients. Results indicate good colocalization: 89 of 95, or 94%, of patient-specific language and motor activations were intersected by the corresponding identified tract. All patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical planning, even in patients with mass lesions.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Vías Nerviosas/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Atlas como Asunto , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
7.
Front Hum Neurosci ; 10: 236, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27252636

RESUMEN

Brain asymmetry varies across individuals. However, genetic factors contributing to this normal variation are largely unknown. Here we studied variation of cortical surface area asymmetry in a large sample of subjects. We performed principal component analysis (PCA) to capture correlated asymmetry variation across cortical regions. We found that caudal and rostral anterior cingulate together account for a substantial part of asymmetry variation among individuals. To find SNPs associated with this subset of brain asymmetry variation we performed a genome-wide association study followed by replication in an independent cohort. We identified one SNP (rs11691187) that had genome-wide significant association (P Combined = 2.40e-08). The rs11691187 is in the first intron of VIT. In a follow-up analysis, we found that VIT gene expression is associated with brain asymmetry in six donors of the Allen Human Brain Atlas. Based on these findings we suggest that VIT contributes to normal brain asymmetry variation. Our results can shed light on disorders associated with altered brain asymmetry.

8.
Int J Comput Assist Radiol Surg ; 11(8): 1475-86, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26762104

RESUMEN

PURPOSE: The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers. METHODS: Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts. RESULTS: Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography ([Formula: see text]). CONCLUSION: Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Edema/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tractos Piramidales/diagnóstico por imagen , Adulto , Algoritmos , Neoplasias Encefálicas/cirugía , Edema/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...