Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 13(13): e029941, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904250

RESUMEN

BACKGROUND: Computational fluid dynamics can compute fractional flow reserve (FFR) accurately. However, existing models are limited by either the intravascular hemodynamic phenomarkers that can be captured or the fidelity of geometries that can be modeled. METHODS AND RESULTS: This study aimed to validate a new coronary angiography-based FFR framework, FFRHARVEY, and examine intravascular hemodynamics to identify new biomarkers that could augment FFR in discerning unrevascularized patients requiring intervention. A 2-center cohort was used to examine diagnostic performance of FFRHARVEY compared with reference wire-based FFR (FFRINVASIVE). Additional biomarkers, longitudinal vorticity, velocity, and wall shear stress, were evaluated for their ability to augment FFR and indicate major adverse cardiac events. A total of 160 patients with 166 lesions were investigated. FFRHARVEY was compared with FFRINVASIVE by investigators blinded to the invasive FFR results with a per-stenosis area under the curve of 0.91, positive predictive value of 90.2%, negative predictive value of 89.6%, sensitivity of 79.3%, and specificity of 95.4%. The percentage ofdiscrepancy for continuous values of FFR was 6.63%. We identified a hemodynamic phenomarker, longitudinal vorticity, as a metric indicative of major adverse cardiac events in unrevascularized gray-zone cases. CONCLUSIONS: FFRHARVEY had high performance (area under the curve: 0.91, positive predictive value: 90.2%, negative predictive value: 89.6%) compared with FFRINVASIVE. The proposed framework provides a robust and accurate way to compute a complete set of intravascular phenomarkers, in which longitudinal vorticity was specifically shown to differentiate vessels predisposed to major adverse cardiac events.


Asunto(s)
Angiografía Coronaria , Reserva del Flujo Fraccional Miocárdico , Valor Predictivo de las Pruebas , Humanos , Reserva del Flujo Fraccional Miocárdico/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/fisiopatología , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico , Modelos Cardiovasculares , Reproducibilidad de los Resultados , Vasos Coronarios/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Hemodinámica/fisiología
2.
Comput Biol Med ; 179: 108760, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944903

RESUMEN

BACKGROUND: Extracting phenotype-representative flow patterns and their associated numerical metrics is a bottleneck in the clinical translation of advanced cardiac flow imaging modalities. We hypothesized that reduced-order models (ROMs) are a suitable strategy for deriving simple and interpretable clinical metrics of intraventricular flow suitable for further assessments. Combined with machine learning (ML) flow-based ROMs could provide new insight to help diagnose and risk-stratify patients. METHODS: We analyzed 2D color-Doppler echocardiograms of 81 non-ischemic dilated cardiomyopathy (DCM) patients, 51 hypertrophic cardiomyopathy (HCM) patients, and 77 normal volunteers (Control). We applied proper orthogonal decomposition (POD) to build patient-specific and cohort-specific ROMs of LV flow. Each ROM aggregates a low number of components representing a spatially dependent velocity map modulated along the cardiac cycle by a time-dependent coefficient. We tested three classifiers using deliberately simple ML analyses of these ROMs with varying supervision levels. In supervised models, hyperparameter grid search was used to derive the ROMs that maximize classification power. The classifiers were blinded to LV chamber geometry and function. We ran vector flow mapping on the color-Doppler sequences to help visualize flow patterns and interpret the ML results. RESULTS: POD-based ROMs stably represented each cohort through 10-fold cross-validation. The principal POD mode captured >80 % of the flow kinetic energy (KE) in all cohorts and represented the LV filling/emptying jets. Mode 2 represented the diastolic vortex and its KE contribution ranged from <1 % (HCM) to 13 % (DCM). Semi-unsupervised classification using patient-specific ROMs revealed that the KE ratio of these two principal modes, the vortex-to-jet (V2J) energy ratio, is a simple, interpretable metric that discriminates DCM, HCM, and Control patients. Receiver operating characteristic curves using V2J as classifier had areas under the curve of 0.81, 0.91, and 0.95 for distinguishing HCM vs. Control, DCM vs. Control, and DCM vs. HCM, respectively. CONCLUSIONS: Modal decomposition of cardiac flow can be used to create ROMs of normal and pathological flow patterns, uncovering simple interpretable flow metrics with power to discriminate disease states, and particularly suitable for further processing using ML.


Asunto(s)
Modelos Cardiovasculares , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Aprendizaje Automático , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Fenotipo , Cardiomiopatía Hipertrófica/fisiopatología , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Ecocardiografía Doppler en Color/métodos
3.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659851

RESUMEN

Intraventricular vector flow mapping (VFM) is a growingly adopted echocardiographic modality that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the pressure and shear forces within the fluid and the resulting accelerations. This limitation has rendered VFM unable to combine information from different time frames in an acquisition sequence or derive fluctuating pressure maps. In this study, we leveraged recent advances in artificial intelligence (AI) to develop AI-VFM, a vector flow mapping modality that uses physics-informed neural networks (PINNs) encoding mass conservation and momentum balance inside the LV, and no-slip boundary conditions at the LV endocardium. AI-VFM recovers the flow and pressure fields in the LV from standard echocardiographic scans. It performs phase unwrapping and recovers flow data in areas without input color-Doppler data. AI-VFM also recovers complete flow maps at time points without color-Doppler input data, producing super-resolution flow maps. We show that informing the PINNs with momentum balance is essential to achieving temporal super-resolution and significantly increases the accuracy of AI-VFM compared to informing the PINNs only with mass conservation. AI-VFM is solely informed by each patient's flow physics; it does not utilize explicit smoothness constraints or incorporate data from other patients or flow models. AI-VFM takes 15 minutes to run in off-the-shelf graphics processing units and its underlying PINN framework could be extended to map other flow-associated metrics like blood residence time or the concentration of coagulation species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA