Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042247

RESUMEN

The aim of this study was to investigate the effects of different seed priming solutions on physical and chemical quality parameters of lentils as well as nodule bacterial diversity before sowing. Therefore, lentil seeds were treated with polyethylene glycol (PEG 6000) (15%), sorbitol (6%), and distilled water, and none pretreated lentils (Lens culinaris) were used as control. The seeds were kept in these solutions for 24 h, then dried on toweling paper for 24 h, and used for the experiment. For nodule microbiota analysis, the plant root was divided into two equal parts, upper and lower, according to the root length and all nodules were collected from each region. According to the results, it was observed that emergence and flowering started late in the control compared to other seed priming treatments. Sorbitol application was found to provide advantages in terms of germination and seedling development. PEG and distilled water (DW) treatments showed an increase in total phenolic component activity; however, no significant change was observed in DPPH radical scavenging activity. Amplicon-based metagenomic analysis revealed that sorbitol and distilled water were the seed priming solutions altering the species diversity, especially Rhizobium sp. as the genus. In the comparison of samples taken from different parts of the root nodules, more Rhizobium sp. as a genus and Rhizobium leguminosarum as the species were found in the nodules collected from the top of the root. According to the overall results of lentil pod, lentil plant, and microbiota, sorbitol and DW can be considered to be a good priming solutions.

2.
Mol Genet Genomics ; 299(1): 31, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472540

RESUMEN

Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.


Asunto(s)
Lactobacillales , Lactobacillus , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Bacterias , Secuenciación Completa del Genoma , Genómica
3.
J Food Sci Technol ; 60(6): 1826-1833, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187981

RESUMEN

Kombucha is a fermented tea with a combination of yeast and bacteria. Kombucha teas may have a variable microbiota based on geographic origin and cultural conditions. The microbial flora of kombucha has been studied with culture-dependent methods. But, the improvement of the metataxonomic approach has broadened our perspective on fermented foods. In this study, a kombucha mother was procured from an artisanal supplier in Türkiye. High-throughput new-generation sequencing (16S rRNA and Internal Transcribed Spacer (ITS)) was carried out to investigate the microbial communities of kombucha after 7 days of fermentation in both liquid tea (L) and pellicle (P). Microbial counts, pH (4.42 ± 0.01 and 3.50 ± 0.02), and TA% (0.26 ± 0.02 and 0.60 ± 0.04) were also detected on the first and 7th days of fermentation. According to metataxonomic results, the dominant bacteria were Komagataeibacter obediens (%21.13), an acetic acid-producing bacteria, and the dominant fungal genus was Pichia kudriavzevii (64.35%) in L while Romboutsia sp. CE17 was the dominant bacteria (7%) and Pichia kudriavzevii was also the dominant yeast in P. This study also revealed different species which were not common in kombucha including propionic acid and butyric acid-producing bacteria such as Anaerotignum propionicum and Butyrivibrio fibrisolvens, a butyrivibriocin producing bacteria. Accordingly, different yeast species were detected such as Tetrapisispora phaffii and Ogataea polimorpha. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05725-z.

4.
Curr Microbiol ; 80(3): 90, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723722

RESUMEN

This study investigated the bacterial and postbiotic potential of three Anatolian bee bread samples obtained from different regions of Turkey (Marmara, Aegean, and Mediterranean) and offered for human consumption. The families most commonly found in Anatolian bee bread were Lactobacillaceae, Oscillospiraceae, Bacteroidaceae, Prevotellaceae, and Lachnospiraceae. Lactobacillus delbruckeii was highly abundant, but also other beneficial bacteria, known to be next-generation probiotics, were revealed in bee bread, such as Prevotalla copri, Faecalibacterium prausnitzii, and Akkermansia muciniphila. Apart from these beneficial bacteria, bee bread samples also harbored undesired bacteria such as Phocaeicola vulgatus, Phocaeicola dorei, and Clostridium perfringens. Fatty acid composition showed that bee bread samples had butyric acid, a short-chain fatty acid, as a postbiotic. Additionally, polyunsaturated fatty acids were also found such as alfa-linolenic acid and eicosadienoic acid. The fatty acids with the highest amounts were palmitic acid (~ 30%), stearic acid (~ 17%), and alpha-linolenic acid (~ 12%). One of the samples exhibited antimicrobial activity against Staphylococcus aureus.


Asunto(s)
Lactobacillales , Própolis , Humanos , Ácidos Grasos , Bacterias , Ácidos Grasos Insaturados
5.
Arch Microbiol ; 204(7): 434, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35763226

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems constitute the adaptive immune system in prokaryotes that provide resistance against invasive genetic elements. The genus Propionibacterium comprises gram-positive, facultative anaerobe, non-spore-forming bacteria, and is the source of some B group vitamins such as B12 as well as bacteriocins. Some of the selected species of the genus Propionibacterium spp. were reclassified into the three genera in 2016 (Acidipropionibacterium spp., Pseudopropionibacterium spp., Cutibacterium spp.). Therefore, this study compared CRISPR/Cas systems, Cas 1 and repeat sequences phylogeny, phage/plasmid surveys as well as insertion sequences of new genera members. In this study, a total of 34 genomes of 13 species were observed with a bioinformatic approach. CRISPR-Cas + + and CRISPRDetect were used to detect CRISPR/Cas systems, direct repeats, and spacers. 39 CRISPR-Cas systems were detected. Type I-E, Type I-U, and one incomplete III-B CRISPR-Cas subtypes were identified. Most of the strains had Cas1/Cas4 fusion proteins. Pseudopropionibacterium propionicum strains had two types I-U and one of the CRISPR loci had csx17 cas genes. Common phage invaders were Propionibacterium phage E6, G4, E1, Anatole, and Doucette. The BLSM62 similarity score of all Cas1 sequences was 48.4% while the pairwise identity of repeat sequences was 48.7%. Common insertion sequences were ISL3, IS3, IS30. The diversity analysis of the CRISPR/Cas system in the genus Propionibacterium provided a new perspective for determining the role of the CRISPR-Cas system in the evolution of new genera.


Asunto(s)
Bacteriófagos , Elementos Transponibles de ADN , Bacteriófagos/genética , Sistemas CRISPR-Cas , Plásmidos/genética , Propionibacterium/genética
6.
Braz J Microbiol ; 53(2): 969-976, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35277850

RESUMEN

High-throughput sequencing has provided a way to monitor the large diversity of microorganisms in fermented foods that have complex microbiota. Up to date, many kinds of cheese have been characterized with the metataxonomic approach, but the safety of unpacked Turkish white cheeses, which are widely consumed in Turkey, has not been assessed. In this study, fifteen unpacked white cheeses sold in public bazaars in Ankara province have been collected and subjected to microbial enumeration as well as physicochemical analysis. Five white cheeses, which have relatively the highest foodborne pathogens, out of fifteen white cheeses, have been analyzed by next-generation sequencing and metataxonomic analysis. According to the results, abundant families were Lactobacillaceae, Oceanospirillaceae, Enterococcaceae, Pseudomonadaceae, and Vibrionaceae. Staphylococcus aureus, E. coli, and Salmonella, which are indicators of bad hygiene and sanitation conditions, were found in cheeses. In conclusion, culture-independent methods such as metataxonomic can be important to evaluate the safety of foods.


Asunto(s)
Queso , Microbiota , Animales , Queso/microbiología , Escherichia coli , Microbiología de Alimentos , Humanos , Microbiota/genética , Leche/microbiología , Turquía
7.
Indian J Microbiol ; 62(1): 40-46, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35068602

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes constitute an adaptive (acquired) defense system of bacteria and archaea. Here 72 probiotic bacteria genomes were investigated in terms of the presence of CRISPR/Cas systems and phage/plasmid invaders through spacer analysis. 49 CRISPR/Cas systems were detected within probiotic strains, namely,17 type II-A, 10 type I-C, 8 type I-E, 5 Type I-U (I-G), 4 type III-A, 2 type I-B, 1 type I-A, 1 type IV-B, and 1 type II-C. The predicted target of spacers was determined in 25 strains and consequently, three different spacer and target patterns were revealed. The diversity of CRISPR spacers provides insight and understanding to determine strain-specific invaders of probiotic bacteria as well as their relationships between strains. CRISPR systems were clarified in many studies for genomic characterization. However, recently, endogenous genome editing with CRISPR has provided an approach for various genome editing projects. Thus, in the future, producing strain-specific phage-resistant starter cultures or probiotics by endogenous genome editing methods according to phage/plasmid survey can be utilized for industrial and pharmaceutical applications. Therefore, this study intended a comprehensive investigation of CRISPR systems of probiotic bacteria. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00971-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA