Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immun Inflamm Dis ; 12(6): e1310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888464

RESUMEN

BACKGROUND: The PI3K/Akt/mTOR pathway and autophagy are important physiological processes. But their roles in eCRSwNP remains controversial. METHODS: In this study, we used the eCRSwNP mouse model, PI3K/Akt/mTOR pathway inhibitors, and autophagy inhibitors and activators to investigate the regulatory effects of the PI3K/Akt/mTOR pathway on autophagy, and their effects on eosinophilic inflammation, and tissue remodeling. The role of ILC2s in eCRSwNP was also studied, and the relationship between ILC2s and autophagy was preliminarily determined. RESULTS: Our results show that eosinophilic inflammation in eCRSwNP mice could be inhibited by promoting the autophagy; otherwise, eosinophilic inflammation could be promoted. Meanwhile, inhibition of the PI3K/Akt/mTOR pathway can further promote autophagy and inhibit eosinophilic inflammation. Meanwhile, inhibiting the PI3K/Akt/mTOR pathway and promoting autophagy can reduce the number of ILC2s and the severity of tissue remodeling in the nasal polyps of eCRSwNP mice. CONCLUSIONS: We conclude that the PI3K/Akt/mTOR pathway plays roles in eosinophilic inflammation and tissue remodeling of eCRSwNP, in part by regulating the level of autophagy. The downregulation of autophagy is a pathogenesis of eCRSwNP; therefore, the recovery of normal autophagy levels might be a new target for eCRSwNP therapy. Furthermore, autophagy might inhibit eosinophilic inflammation and tissue remodeling, in part by reducing the number of ILC2s.


Asunto(s)
Autofagia , Inmunidad Innata , Linfocitos , Pólipos Nasales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Sinusitis , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Sinusitis/inmunología , Sinusitis/patología , Sinusitis/metabolismo , Autofagia/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Enfermedad Crónica , Pólipos Nasales/inmunología , Pólipos Nasales/patología , Modelos Animales de Enfermedad , Eosinofilia/inmunología , Eosinofilia/patología , Eosinófilos/inmunología , Eosinófilos/patología , Eosinófilos/metabolismo , Ratones Endogámicos BALB C
2.
Medicine (Baltimore) ; 103(16): e37824, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640298

RESUMEN

The dysregulation of lipid metabolism is a critical factor in the initiation and progression of tumors. In this investigation, we aim to characterize the molecular subtypes of head and neck squamous cell carcinoma (HNSCC) based on their association with fatty acid metabolism and develop a prognostic risk model. The transcriptomic and clinical data about HNSCC were obtained from public databases. Clustering analysis was conducted on fatty acid metabolism genes (FAMG) associated with prognosis, utilizing the non-negative matrix factorization algorithm. The immune infiltration, response to immune therapy, and drug sensitivity between molecular subtypes were evaluated. Differential expression genes were identified between subtypes, and a prognostic model was constructed using Cox regression analyses. A nomogram for HNSCC was constructed and evaluated. Thirty FAMGs have been found to exhibit differential expression in HNSCC, out of which three are associated with HNSCC prognosis. By performing clustering analysis on these 3 genes, 2 distinct molecular subtypes of HNSCC were identified that exhibit significant heterogeneity in prognosis, immune landscape, and treatment response. Using a set of 7778 genes that displayed differential expression between the 2 molecular subtypes, a prognostic risk model for HNSCC was constructed comprising 11 genes. This model has the ability to stratify HNSCC patients into high-risk and low-risk groups, which exhibit significant differences in prognosis, immune infiltration, and immune therapy response. Moreover, our data suggest that this risk model is negatively correlated with B cells and most T cells, but positively correlated with macrophages, mast cells, and dendritic cells. Ultimately, we constructed a nomogram incorporating both the risk signature and radiotherapy, which has demonstrated exceptional performance in predicting prognosis for HNSCC patients. A molecular classification system and prognostic risk models were developed for HNSCC based on FAMGs. This study revealed the potential involvement of FAMGs in modulating tumor immune microenvironment and response to treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoterapia , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Metabolismo de los Lípidos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Ácidos Grasos , Pronóstico , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA